AI Article Synopsis

  • Ascochyta blight is a significant issue for chickpea production worldwide, and controlling it typically involves fungicide use, which can impact crop quality.
  • Traditional diagnostic methods for detecting the Ascochyta rabiei pathogen require specialized equipment and trained personnel, making them time-consuming and complex.
  • A new rapid detection method using a molecular beacon probe has been developed, allowing for accurate pathogen detection in just 30 minutes and holding promise for future in-field applications despite being initially lab-based.

Article Abstract

Ascochyta blight is a major biotic stress that limits chickpea production globally. Fungicide application remains one of the effective control measures for the endemic spread. Due to the serious threat that synthetic fungicides pose to crop quality, early diagnosis of the pathogen is imperative. Whilst there have previously been several conventional lab-based diagnostic methods developed for early detection of Ascochyta rabiei, they require long assay times, specialised equipment and facilities, and trained personnel to process the samples. To overcome this challenge, a rapid amplification-free detection assay using a molecular beacon probe was developed. The method consists of a simple assembly assay that accurately detects pathogen within 30 min. The developed assay is species-specific and has a similar sensitivity level as conventional amplification-based methods. Although it is still a lab-based technique, considering the simplicity of the assay, it has a great potential to be developed further as a reliable in-field diagnostic device for early detection and quantification of fungal pathogen spores.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11470000PMC
http://dx.doi.org/10.1038/s41598-024-74564-5DOI Listing

Publication Analysis

Top Keywords

amplification-free detection
8
detection ascochyta
8
ascochyta blight
8
molecular beacon
8
early detection
8
assay
6
blight chickpea
4
chickpea simple
4
simple molecular
4
beacon assay
4

Similar Publications

A spherical nucleic acid (SNA, AuNPs-aptamer) into CRISPR/Cas12a system combined with poly T-template copper nanoparticles as fluorescence reporter was fabricated to establish an amplification-free sensitive method for Staphylococcus aureus (S. aureus) detection. This method, named PTCas12a, utilizes the concept that the bifunction of SNA recognizes the S.

View Article and Find Full Text PDF

The anti-Stokes emission of photon upconversion nanoparticles (UCNPs) facilitates their use as labels for ultrasensitive detection in biological samples as infrared excitation does not induce autofluorescence at visible wavelengths. The detection of extremely low-abundance analytes, however, remains challenging as it is impossible to completely avoid nonspecific binding of label conjugates. To overcome this limitation, we developed a novel hybridization complex transfer technique using UCNP labels to detect short nucleic acids directly without target amplification.

View Article and Find Full Text PDF

As multiple imaging modalities cannot reliably diagnose cardiac tumors, the molecular approach offers alternative ways to detect rare ones. One such molecular approach is CRISPR-based diagnostics (CRISPR-Dx). CRISPR-Dx enables visual readout, portable diagnostics, and rapid and multiplex detection of nucleic acids such as microRNA (miRNA).

View Article and Find Full Text PDF

The CRISPR-Cas12a system has shown tremendous potential for developing efficient biosensors. Albeit important, current CRISPR-Cas system-based diagnostic technologies (CRISPR-DX) highly rely on an additional preamplification procedure to obtain high sensitivity, inevitably leading to issues such as complicated assay workflow, cross-contamination, etc. Herein, a spherical protospacer-adjacent motif (PAM)-antenna-enhanced CRISPR-Cas12a system is fabricated for universal amplification-free nucleic acid detection with a detection limit of subfemtomolar.

View Article and Find Full Text PDF

Amplification-free CRISPR/Cas based dual-enzymatic colorimetric nucleic acid biosensing device.

Lab Chip

January 2025

Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan.

Nucleic acid testing (NAT) is widely considered the gold standard in analytical fields, with applications spanning environmental monitoring, forensic science and clinical diagnostics, among others. However, its widespread use is often constrained by complicated assay procedures, the need for specialized equipment, and the complexity of reagent handling. In this study, we demonstrate a fully integrated 3D-printed biosensensing device employing a CRISPR/Cas12a-based dual-enzymatic mechanism for highly sensitive and user-friendly nucleic acid detection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!