Herbal materials used as soil amendments alleviate root rot of Panax ginseng.

Sci Rep

Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Dongzhimen Nanxiao Rd, Beijing, 100700, China.

Published: October 2024

AI Article Synopsis

  • Root rot is a detrimental fungal disease impacting the growth and quality of Panxa ginseng, prompting the need for effective solutions.
  • This study proposes using mixed powers of medicinal herbs and corn stalks as eco-friendly soil amendments, which significantly reduced root rot incidence compared to untreated soil.
  • The application of these amendments not only lowered the disease index but also enhanced soil enzyme activities and altered the soil fungal community, indicating a promising strategy for managing ginseng root rot sustainably.

Article Abstract

Root rot is a serious soil-borne fungal disease that seriously affects the yield and quality of Panxa ginseng. To develop a sustainable strategy for alleviating ginseng root rot, an herb-based soil amendment is suggested in this study. Mixed powers of medicinal herbs (MP) and corn stalks (CS) were used as soil amendments, respectively, along with a control group (CK) without treatment. The application of MP and CS led to significant relief from ginseng root rot. The disease index (%) represents both the incidence rate and symptom severity of the disease. The disease index of the MP and CS group was 18.52% and 25.93%, respectively, lower than that of CK (40.74%). Correspondingly, three soil enzyme activities improved; the antifungal components in the soil increased; and the relative abundances of root rot pathogens decreased in response to MP Soil enzyme activities were negatively correlated with disease grades. MP group also led to possible interactive changes in the communities of soil fungi and chemical components. In conclusion, our results suggest that the use of herb-based soil amendments has significant potential as an ecological and effective approach to controlling root rot disease of ginseng by the changing rhizosphere fungal community and soil compositions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11470044PMC
http://dx.doi.org/10.1038/s41598-024-74304-9DOI Listing

Publication Analysis

Top Keywords

root rot
24
soil amendments
12
ginseng root
12
soil
9
herb-based soil
8
rot disease
8
soil enzyme
8
enzyme activities
8
root
6
rot
6

Similar Publications

Ecotoxicological impact of succinate dehydrogenase inhibitor (SDHI) fungicides on non-targeted organisms: a review.

Ecotoxicology

January 2025

Amity Institute of Environmental Sciences, Amity University, Sector-125, Noida, 201301, Uttar Pradesh, India.

As the global population continues to grow, the use of pesticides to increase food production is projected to escalate. Pesticides are critical in plant protection, offering a powerful defense against fungal diseases such as apple scab, leaf spot, sclerotinia rot, damping off, sheath blight, and root rot, which threaten crops like cereals, corn, cotton, soybean, sugarcane, tuberous vegetables, and ornamentals. Succinate Dehydrogenase Inhibitor (SDHI) fungicides represent a novel class essential for controlling fungal pathogens and bolstering food security.

View Article and Find Full Text PDF

Toxicity of standing milkvetch infected with in white mice.

Front Vet Sci

January 2025

State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Engineering Research Center of Grassland Industry, Ministry of Education, Lanzhou University, Lanzhou, China.

Introduction: Standing milkvetch () is widely distributed in the wild in Eurasia and North America and has been bred for cultivated forage in China. Yellow stunt and root rot disease caused by is the primary disease of standing milkvetch. promotes the production of swainsonine in the plant.

View Article and Find Full Text PDF

Crown rot impacted olive plants (cv. Koroneiki) in an orchard in Chakwal, Punjab, Pakistan (32° N, 72° E), with a prevalence of 60%. Observable symptoms included leaf chlorosis, defoliation, wilting, and twig dieback in 6-8-year-old plants, ultimately resulting in their demise (Fig.

View Article and Find Full Text PDF

From 2016 to 2019, 128 organic and conventional spring and winter pea fields in Germany were surveyed to determine the effects of cropping history and pedo-climatic conditions on pea root health, the diversity of Fusarium and Didymella communities and their collective effect on pea yield. Roots generally appeared healthy or showed minor disease symptoms despite the frequent occurrence of 4 Didymella and 14 Fusarium species. Soil pH interacted with the occurrence of the Fusarium oxysporum species complex (FOSC) and F.

View Article and Find Full Text PDF

This study evaluated the effectiveness of arbuscular mycorrhizal fungi (AMF) species, including (FM), (RI), (CE), and a Mycorrhizal mix (MM) comprising these three species, on pepper plants ( L.) inoculated with two isolates of (48- and 18-) and two isolates of mix (50-F. mixture and 147-F.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!