AI Article Synopsis

  • The text discusses the creation of gmctool, an online tool designed to predict metabolic weaknesses in cancer cells, which is important for systems biology research.
  • This tool utilizes a concept called genetic Minimal Cut Sets (gMCSs) to analyze genome-scale metabolic networks and includes a database of synthetic lethals derived from the latest metabolic map of human cells.
  • Notably, gmctool has shown improved performance over earlier algorithms and has been applied to multiple myeloma, a type of blood cancer, providing experimental evidence for the critical roles of specific enzymes in certain patient groups.

Article Abstract

The development of computational tools for the systematic prediction of metabolic vulnerabilities of cancer cells constitutes a central question in systems biology. Here, we present gmctool, a freely accessible online tool that allows us to accomplish this task in a simple, efficient and intuitive environment. gmctool exploits the concept of genetic Minimal Cut Sets (gMCSs), a theoretical approach to synthetic lethality based on genome-scale metabolic networks, including a unique database of synthetic lethals computed from Human1, the most recent metabolic reconstruction of human cells. gmctool introduces qualitative and quantitative improvements over our previously developed algorithms to predict, visualize and analyze metabolic vulnerabilities in cancer, demonstrating a superior performance than competing algorithms. A detailed illustration of gmctool is presented for multiple myeloma (MM), an incurable hematological malignancy. We provide in vitro experimental evidence for the essentiality of CTPS1 (CTPS synthase) and UAP1 (UDP-N-Acetylglucosamine Pyrophosphorylase 1) in specific MM patient subgroups.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11470099PMC
http://dx.doi.org/10.1038/s41467-024-52725-4DOI Listing

Publication Analysis

Top Keywords

metabolic vulnerabilities
12
vulnerabilities cancer
12
metabolic
5
automated network-based
4
network-based tool
4
tool search
4
search metabolic
4
cancer development
4
development computational
4
computational tools
4

Similar Publications

Ferroptosis: A Targetable Vulnerability for Melanoma Treatment.

J Invest Dermatol

January 2025

Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China; Furong Laboratory, Changsha, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China. Electronic address:

Melanoma is a devastating form of skin cancer characterized by a high mutational burden, limited treatment success, and dismal prognosis. Although immunotherapy and targeted therapies have significantly revolutionized melanoma treatment, the majority of patients fail to achieve durable responses, highlighting the urgent need for novel therapeutic strategies. Ferroptosis, an iron-dependent form of regulated cell death driven by the overwhelming accumulation of lipid peroxides, has emerged as a promising therapeutic approach in preclinical melanoma models.

View Article and Find Full Text PDF

Dasatinib and Quercetin Limit Gingival Senescence, Inflammation, and Bone Loss.

J Dent Res

January 2025

Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.

Cellular senescence has emerged as one of the central hallmarks of aging and drivers of chronic comorbidities, including periodontal diseases. Senescence can also occur in younger tissues and instigate metabolic alterations and dysfunction, culminating in accelerated aging and pathological consequences. Senotherapeutics, such as the combination of dasatinib and quercetin (DQ), are being increasingly used to improve the clinical outcomes of chronic disorders and promote a healthy life span through the reduction of senescent cell burden and senescence-associated secretory phenotype (SASP).

View Article and Find Full Text PDF

Fucosidosis: A Review of a Rare Disease.

Int J Mol Sci

January 2025

Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Turkey.

Fucosidosis is a rare lysosomal storage disease caused by α-L-fucosidase deficiency following a mutation in the gene. This enzyme is responsible for breaking down fucose-containing glycoproteins, glycolipids, and oligosaccharides within the lysosome. Mutations in result in either reduced enzyme activity or complete loss of function, leading to the accumulation of fucose-rich substrates in lysosomes.

View Article and Find Full Text PDF

Localization of Melanocortin 1 Receptor in the Substantia Nigra.

Int J Mol Sci

December 2024

Department of Anatomy, Dokkyo Medical University School of Medicine, 880 Kita-Kobayashi, Mibu-machi, Shimotsuga-gun 321-0293, Tochigi, Japan.

Recent findings have revealed that melanocortin 1 receptor (MC1R) deficiency leads to Parkinson's disease-like dopaminergic neurodegeneration in the substantia nigra (SN). However, its precise distribution and expressing-cell type in the SN remain unclear. Therefore, in this study, we analyzed the localization and characteristics of MC1R in the SN using histological methods, including in situ hybridization and immunohistochemistry.

View Article and Find Full Text PDF

Amphetamine abuse is a global health epidemic that is difficult to treat due to individual differences in response to environmental factors, including stress reactivity and anxiety levels, as well as individual neuronal differences, which may result in increased/decreased vulnerability to addiction. In the present study, we investigated whether the Wistar rats behavioral traits of high (HR) and low (LR) locomotor activity to novelty influence motivational behavior (induced feeding model; iFR by electrical stimulation of the ventral tegmental area; Es-VTA) supported by amphetamine injection into the nucleus accumbens shell (AcbSh) (HR, n = 5; LR, n = 5). A correlation was found between the novelty test's locomotor activity score and the frequency threshold percentage change ( < 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!