AI Article Synopsis

  • * Key functions of DCs, such as their ability to phagocytize material and express CTL-activating ligands, are vital for immuno-oncology studies but are hindered by the cells' inability to be cultured indefinitely in the lab.
  • * The authors present a new method using a conditionally immortalized DC line that can be easily activated and maintained in culture, allowing for high-throughput screening of potential DC activators without the variabilities of freshly generated DCs.

Article Abstract

Dendritic cells (DCs), and especially so conventional type I DCs (cDC1s), are fundamental regulators of anticancer immunity, largely reflecting their superior ability to engulf tumor-derived material and process it for cross-presentation on MHC Class I molecules to CD8 cytotoxic T lymphocytes (CTLs). Thus, investigating key DC functions including (but not limited to) phagocytic capacity, expression of CTL-activating ligands on the cell surface, and cross-presentation efficacy is an important component of multiple immuno-oncology studies. Unfortunately, DCs are terminally differentiated cells, implying that they cannot be propagated indefinitely in vitro and hence must be generated ad hoc from circulating or bone marrow-derived precursors, which presents several limitations. Here, we propose a simple, cytofluorometric method to quantify phenotypic activation markers including CD80, CD86 and MHC class II molecules on the surface of a conditionally immortalized immature DC line that can be indefinitely propagated in vitro but also driven into maturation at will with a simple change in culture conditions. Upon appropriate scaling and automatization, this approach is compatible with high-throughput screening programs for the discovery of novel DC activators that do not suffer from batch variability and other limitations associated with the generation of fresh DCs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/bs.mcb.2024.05.008DOI Listing

Publication Analysis

Top Keywords

mhc class
8
class molecules
8
flow cytometry-assisted
4
cytometry-assisted analysis
4
analysis phenotypic
4
phenotypic maturation
4
maturation markers
4
markers immortalized
4
immortalized dendritic
4
dendritic cell
4

Similar Publications

Liver cancer is the sixth most frequent malignancy and the fourth major cause of deaths worldwide. The current treatments are only effective in early stages of cancer. To overcome the therapeutic challenges and exploration of immunotherapeutic options, broad spectral therapeutic vaccines could have significant impact.

View Article and Find Full Text PDF

Tumor-draining lymph node dendritic cells (DCs) are poor stimulators of tumor antigen-specific CD4 T cells; however, the mechanism behind this defect is unclear. We now show that, in tumor-draining lymph node DCs, a large proportion of major histocompatibility complex class II (MHC-II) molecules retains the class II-associated invariant chain peptide (CLIP) fragment of the invariant chain bound to the MHC-II peptide binding groove due to reduced expression of the peptide editor H2-M and enhanced activity of the CLIP-generating proteinase cathepsin S. The net effect of this is that MHC-II molecules are unable to efficiently bind antigenic peptides.

View Article and Find Full Text PDF

FcRn-guided antigen trafficking enhances cancer vaccine efficacy.

Cancer Immunol Immunother

January 2025

Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, People's Republic of China.

The development of tumor vaccines represents a significant focus within cancer therapeutics research. Nonetheless, the efficiency of antigen presentation in tumor vaccine remains suboptimal. We introduce an innovative mRNA-lipid nanoparticle platform designed to express tumor antigenic epitopes fused with the transmembrane domain and cytoplasmic tail of the neonatal Fc receptor (FcRn).

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA.

Background: Microglia are dominant immune cells residing in the brain that regulate brain homeostasis and T-cell responses. An important immune function of microglia involves presenting microbial antigens to mucosal-associated invariant T (MAIT) cells; MAIT cells recognize microbial vitamin B-derived metabolites presented by the MHC class I-like molecule, MR1. Our recent findings highlighted a detrimental role for the MR1/MAIT cell axis in Alzheimer's disease (AD) using the 5XFAD mouse model.

View Article and Find Full Text PDF

Background: Beta-2 microglobulin (β2m) is a component of the major histocompatibility complex class I (MHC-I) playing a crucial role in the immune system on cell surface, but it can be separated from the MHC-I and exist in biological fluid independently. Numerous reports have shown that β2m is a systemic pro-aging factor impairing cognitive function, and that it is increased in the blood and CSF of patients with Alzheimer's disease (AD). While β2m in the body fluid has been recognized as a potential factor in AD and aging, the development of therapeutic agents, especially those directly targeting β2m using antibodies, may face challenges.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!