A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Advances in molecular glues: exploring chemical space and design principles for targeted protein degradation. | LitMetric

AI Article Synopsis

  • - The discovery of cereblon (CRBN) as the target of thalidomide transformed the targeted protein degradation (TPD) field by introducing bivalent degraders that utilize ubiquitin-mediated pathways.
  • - Recently, low-molecular-weight molecular glue degraders (MGDs) have emerged, providing a new approach to TPD with beneficial properties suited for small-molecule treatments.
  • - This review explores the development of MGDs, including specific case studies and design principles, while also discussing the collaborative innovations within the chemical space of molecular glues.

Article Abstract

The discovery of the E3 ligase cereblon (CRBN) as the target of thalidomide and its analogs revolutionized the field of targeted protein degradation (TPD). This ubiquitin-mediated degradation pathway was first harnessed by bivalent degraders. Recently, the emergence of low-molecular-weight molecular glue degraders (MGDs) has expanded the TPD landscape, because MGDs operate via the same mechanism while offering attractive physicochemical properties that are consistent with small-molecule therapeutics. This review delves into the discovery and advancement of MGDs, with case studies on cyclin K and the zinc finger protein IKZF2, highlighting the design principles, biological assays and therapeutic applications. Additionally, it examines the chemical space of molecular glues and outlines the collaborative efforts that are fueling innovation in this field.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.drudis.2024.104205DOI Listing

Publication Analysis

Top Keywords

molecular glues
8
chemical space
8
design principles
8
targeted protein
8
protein degradation
8
advances molecular
4
glues exploring
4
exploring chemical
4
space design
4
principles targeted
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!