Studies have discovered wide presence of 2-mercaptobenzothiazole (2-MBT) and 2-MBT-derived vulcanization accelerators (MVAs) in household dust samples, suggesting that these chemicals may have been pervasive in the environment. However, despite the potential for human exposure, the presence of MVAs in human urine, a common matrix used for assessing exposure to environmental chemicals, has not been thoroughly investigated. The current study comprehensively analyzed 11 kinds of MVAs in urine samples from the recruited general population (n = 197) living in Taizhou city, China. Five kinds of MVAs were detectable in >50 % of human urine samples. This indicates the widespread exposure to these vulcanization accelerators among the general population. The predominant target analytes in human urine were 2-MBT and 2,2'-dithiobisbenzothiazole (MBTS), with the mean urinary concentrations of 2.7 ng/mL (range
Download full-text PDF
Source
http://dx.doi.org/10.1016/j.scitotenv.2024.176815 DOI Listing Publication Analysis
Top Keywords
J Phys Chem B
December 2024
Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States.
The achievement of sufficient dispersion of vulcanization accelerators is critical to tailoring superior cross-linked elastomers. Modern recipes rely on multicomponent formulations with silica particles covered by coupling agents. We study the molecular properties of select accelerators in polyisoprene melts and their affinity for functionalized surfaces via extensive all-atom molecular dynamics simulations.
View Article and Find Full Text PDFEnviron Int
December 2024
Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Analytical Chemistry, Permoserstrasse 15, 04318 Leipzig, Germany; University of Leipzig, Institute for Analytical Chemistry, Linnéstrasse 3, 04103 Leipzig, Germany. Electronic address:
Tire and road wear particles (TRWP) are a major contributor to non-exhaust traffic emissions, but their contribution to and dynamics in urban aerosol is not well known. Urban particulate matter (PM) in the size fraction below 10 µm (PM) from two German cities was collected over 2 weeks and analysed for 39 tire-related chemicals, including amines, guanidines, ureas, benzothiazoles, p-phenylenediamines, quinolines and several transformation products (TPs). Of these, 37 compounds were determined in PM at median concentrations of 212 pg/m for 1,3-diphenylguanidine (DPG) and 132 pg/m for benzothiazole-2-sulfonic acid (BTSA); 10 of the compounds have not been reported in urban aerosol before.
View Article and Find Full Text PDFPolymers (Basel)
November 2024
Faculty of Technology Novi Sad, The University of Novi Sad, 21000 Novi Sad, Serbia.
Zeolites, known for their unique structural and catalytic properties, are added to the natural rubber matrix to investigate their influence on the vulcanization process and the resultant properties of composites. The natural rubber-based composites were masticated with 4A synthetic zeolite (0, 5, 10, 15, 20, and 30 phr). The curing of the rubber compounds was monitored on a moving die rheometer at 150 °C.
View Article and Find Full Text PDFSci Total Environ
December 2024
Institute of Polar Sciences, National Research Council (CNR-ISP), Via Torino, 155, 30172 Venice Mestre, VE, Italy; Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino, 155, 30172 Venice Mestre, VE, Italy.
Int J Biol Macromol
January 2025
Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy.
There is a growing need to find novel, sustainable solutions for elastomer reinforcement. Many biomass polymers have been used for this purpose, including cellulose, starch, lignin and protein. Among these, proteins are an under-explored solution, although they are promising materials due to their abundance in agricultural and animal by-products and the multifunctional properties they can impart to composites.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!