Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Evaluating compostability is increasingly essential for proving commercial bio-based cutlery or packaging since these materials must biodegrade under controlled conditions quickly. Utensils for eating represent Mexico's most popular consumer single-use materials, and Mexican regulations based on biodegradation or compostability are still vague and lack scientific evaluations. This study analyzed three bio-based polymeric materials (bags, dishes, and forks) from commercial brands following Mexican regulations and using various analytical techniques to verify their biodegradability and compostability. First, weight loss measurements, stress-strain tests, and topographic imaging were applied for preliminary observations at the macro scale up to 90 days of compostability. Besides, spectroscopy, microscopy, and thermal techniques indicate changes and behavior of the bio-based materials depending on the composition. The results suggest that bags exhibited the highest decomposition rate (80 %) compared to dishes and forks. Similarly, mechanical resistance indicates a reduction of 62 % for bags, 30 % for dishes, and almost none for forks. Texture image analysis revealed that the complexity and roughness of the materials increased over time, correlating with the physical changes observed. These results indicate minimal surface topography changes and higher stiffness for dishes and forks, indicating low biodegradability. SEM images supported these findings, showing surface degradation in bags and dishes but not in forks. FTIR and XRD analyses confirmed the presence of polyamide (bags) and polypropylene (dishes and forks). These results reduce biodegradation and differ from the claims made by manufacturers. The thermal analysis found similar results, indicating that the materials' thermal stability decreased after degradation, which is related to lower biodegradability and compostability. Overall, the study concluded only bags meet the criteria for compostability in national regulations. However, dishes and forks made of petroleum-derived polymers have higher resistance to natural and microbial degradation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2024.176763 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!