In this work, we describe for the first time the synthesis of a thiazole bis-imine fluorometric sensor for the selective determination of Pb in environmental, biological, and food samples. The novel molecules were obtained through a multicomponent reaction using a green and environmentally sustainable methodology. Synthesized chemical sensors were characterized using spectroscopic techniques to structural elucidation, including UV-Vis, FTIR-ATR, H and C NMR. One of these sensors exhibited remarkable selectivity for the Pb ion at pH 3, forming a stable 1:1 (metal:ligand) complex. Additionally, the reaction conditions for complex formation were optimized, resulting in a method with a linear range of 0.667-10 μg L and a detection limit of 0.18 μg L. Furthermore, method validation reinforced its reliability, showing low relative standard deviation in both intra-day and inter-day analyses. Recovery experiments ranged from 83.53 % to 119.10 %. This study represents a significant and innovative advancement in the development of rapid, sensitive, and alternative methods for the detection of potentially toxic metals in a wide range of samples employing a green multicomponent reaction of thiazole bis-imines.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.saa.2024.125250 | DOI Listing |
Mikrochim Acta
January 2025
Key Laboratory of Synthetic and Natural Functional Molecule Chemistry (Ministry of Education), College of Chemistry & Materials Science, Northwest University, Xi' an, 710069, PR, China.
Thiazolo[5,4-d]thiazole-2,5-dicarboxylic acid (HThz), a thiazolothiazole (TTz) derivative with carboxylic acid groups, was synthesized as a ligand for the creation of five MOFs, each associated with distinct metal ions including Ag, Mn, Co, Zn, and Cu. The cathodic electrochemiluminescence (ECL) of HThz and the resulting MOFs was investigated. HThz was found to generate ECL signals, but this process was heavily reliant on potassium persulfate (KSO) as a co-reactant.
View Article and Find Full Text PDFSci Rep
January 2025
Department of General and Transplant Surgery, Poznan University of Medical Sciences, 61-701, Poznan, Poland.
Tacrolimus is metabolized in the liver with the participation of cytochrome P450 isoforms 3A4 and 3A5 (CYP3A4, CYP3A5). Omeprazole, unlike famotidine, is a substrate and inhibitor of CYP2C19, CYP3A4, CYP3A5 enzymes. The aim of the study is to compare the effect of omeprazole and famotidine on the tacrolimus concentration and the kidney transplant function.
View Article and Find Full Text PDFSci Rep
January 2025
State Key Laboratory of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
Tyrosine-protein kinase Src plays a key role in cell proliferation and growth under favorable conditions, but its overexpression and genetic mutations can lead to the progression of various inflammatory diseases. Due to the specificity and selectivity problems of previously discovered inhibitors like dasatinib and bosutinib, we employed an integrated machine learning and structure-based drug repurposing strategy to find novel, targeted, and non-toxic Src kinase inhibitors. Different machine learning models including random forest (RF), k-nearest neighbors (K-NN), decision tree, and support vector machine (SVM), were trained using already available bioactivity data of Src kinase targeting compounds.
View Article and Find Full Text PDFChem Biodivers
January 2025
Universite Mohammed Premier Oujda Faculte Pluridisciplinaire de Nador, Department of Chemistry, 60700 Nador, Morocco, Nador, 60700, Nador, MOROCCO.
In recent years, Imidazothiazole-Chalcone conjugates have emerged as notable pharmacophores with potential applications in discovering biologically active compounds. This study focuses on synthesizing novel imidazo[2,1-b]thiazole chalcone derivatives through a facile and conventional process adhering to several principles of green chemistry, facilitating scalable production. The synthesized compounds underwent comprehensive spectroscopic analysis, including 1H NMR, 13C NMR, LC-MS, and FT-IR techniques.
View Article and Find Full Text PDFMikrochim Acta
January 2025
College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
An innovative colorimetric sensing strategy was developed for the detection of glucose by the integration of glucose aptamer, glucose oxidase (GOx), and horseradish peroxidase (HRP), termed aptamer proximal enzyme cascade reactions (APECR). In the presence of glucose, aptamer binding enables GOx to catalyze glucose oxidation into HO efficiently. Subsequently, the adjacent HRP catalyzes the oxidation of the peroxidase substrate, 2,2'-biazobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), utilizing the generated HO, resulting in a distinct color change.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!