Application of precursor with ultra-small particle size and uniform particle distribution for ultra-high nickel single-crystal cathode materials by coprecipitation method.

J Colloid Interface Sci

National & Local United Engineering Research Centre for Chemical Process Simulation and Intensification, Chemical Process Simulation and Optimization Engineering Research Center of Ministry of Education, Xiangtan University, Xiangtan 411100, China. Electronic address:

Published: February 2025

Ultra-high nickel single-crystal cathode materials have become the most promising for lithium-ion batteries. However, the preparation of ultra-high nickel single-crystal precursors by a continuous coprecipitation method has the disadvantages of large particle size, wide distribution, poor morphology. The extent of the inhomogeneous reactions can be more severe in single-crystal cathodes with larger particle size. Herein, the coprecipitation method with a solid concentrator was adopted, and citrate sodium was used as a complexing agent to improve the physical properties of precursors and electrochemical performance of single-crystal cathode materials. By analyzing the morphology and agglomeration mechanism of the precursor nucleuses under different pH values, it was found that hexagonal nanosheets grew along the 101 direction, and the primary particles showed thicker at pH of 11.4. The hexagonal nanosheets grew along the 001 direction, and the primary particles showed finer at pH of 12.2. The morphology and particle size uniformity of the secondary particles formed by agglomeration at these two pH values showed poor. However, hexagonal nanosheets grew synergistically along the 001 and 101 directions at pH of 11.8, so the primary particles with uniform particle size gradually agglomerated, and then the secondary particles with ultra-small particle size and uniform distribution obtained. Compared to materials prepared by the traditional continuous coprecipitation method, the precursor displays a smaller particle size(D = 1.8 µm), higher sphericity, uniformity and denser internal structure. In order to evaluate the performance of NiCoMn(OH) with ultra-small particle size, the sintering conditions of LiNiCoMnO need to be explored. It was found that the LiNiCoMnO cathode material prepared at 790 °C exhibited higher discharge capacity, cycle and rate performance, compared to materials prepared at 760 °C and 820 °C. We further utilized TEM, EPMA, and XPS to test the internal structure and valence state of LiNiCoMnO cathode material. The results show that the LiNiCoMnO calcined at 790 °C has a good single crystal structure. The LiNiCoMnO cathode materials inherited the structure and particle size of NiCoMn(OH) precursors, and displayed discharge capacity of 194.7 mAh/g and capacity retention rate of 89.8 % after 100 cycles at 1 C. The microstructure and phase transition of the as-prepared cathode material are well-maintained after long-term cycling, without obvious inter-crystalline micro-crack. The results indicate that its electrochemical performance is better than that of cathode materials with precursors prepared by a continuous coprecipitation method. This work provides new insights for the preparation of small-particle-size precursor and single-crystal cathode materials.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2024.10.025DOI Listing

Publication Analysis

Top Keywords

particle size
32
cathode materials
24
coprecipitation method
20
single-crystal cathode
16
ultra-small particle
12
ultra-high nickel
12
nickel single-crystal
12
continuous coprecipitation
12
hexagonal nanosheets
12
nanosheets grew
12

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!