AI Article Synopsis

  • Epilepsy is a common neurological disorder and a major healthcare issue, prompting researchers to explore machine learning (ML) for predicting treatment outcomes in patients.* -
  • The study involved 229 pediatric patients and compared 11 different ML techniques to assess their effectiveness in identifying responses to anti-seizure medications.* -
  • The Support Vector Machine algorithm outperformed others with a high accuracy rate of 97.06% for detecting drug-resistant epilepsy, suggesting a need for early intervention and a multidisciplinary treatment approach.*

Article Abstract

Unlabelled: Epilepsy stands as one of the prevalent and significant neurological disorders, representing a critical healthcare challenge. Recently, machine learning techniques have emerged as versatile tools across various healthcare domains, encompassing diagnostics, treatment assessment, and prognosis. We compared 11 machine learning model to find the best ML model to predict drug treatment outcomes for our cohort, which we previously evaluated using classical statistical methods.

Methods: In our study, we evaluated patients who presented to the pediatric neurology department of our university hospital with seizures at the age of 1 to 24 months and were diagnosed with epilepsy. We utilized 11 different machine learning techniques namely Decision Tree, Bagging, K-Nearest Neighbour, Linear Discriminant Analysis, Logistic Regression, Neural Networks, Deep Neural Networks, Support Vector Machine. Besides, we compared these techniques using various performance metrics to identify anti-seizure medicine response. We also utilized the chi-square feature selection methods to enhance performance in machine learning algorithms.

Results: Two hundred and twenty-nine patients (110 male and 119 female) who were diagnosed between the ages of 1-24 months were included in the study. Support Vector Machine algorithm was found to be effective in drug resistant epilepsy detection, with the highest aure under curve value (0.9934) and achieving a test accuracy of 97.06 %.

Conclusion: This study can shed light on future studies by showing that the Support Vector Machine algorithm can effectively determine the drug resistant epilepsy. The pediatric neurologist and experts should be referred to non-medical treatment (epilepsy surgery, ketogenic diet) at the early stages and multidisciplinary approach should be provided.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.yebeh.2024.110075DOI Listing

Publication Analysis

Top Keywords

machine learning
20
support vector
12
vector machine
12
machine
8
learning techniques
8
neural networks
8
machine algorithm
8
drug resistant
8
resistant epilepsy
8
epilepsy
5

Similar Publications

A large set of antimalarial molecules (N ~ 15k) was employed from ChEMBL to build a robust random forest (RF) model for the prediction of antiplasmodial activity. Rather than depending on high throughput screening (HTS) data, molecules tested at multiple doses against blood stages of Plasmodium falciparum were used for model development. The open-access and code-free KNIME platform was used to develop a workflow to train the model on 80% of data (N ~ 12k).

View Article and Find Full Text PDF

Background: Postoperative fever (POF) is a common occurrence in patients undergoing major surgery, presenting challenges and burdens for both patients and surgeons yet. This study endeavors to examine the incidence, identify risk factors, and establish a machine learning-based predictive model for POF following surgery of oral cancer.

Methods: A total of seven hundred and twenty-seven consecutive patients undergoing radical resection of oral cancer were retrospectively investigated.

View Article and Find Full Text PDF

Background: Intrahepatic cholestasis of pregnancy (ICP) is a liver disorder that occurs in the second and third trimesters of pregnancy and is associated with a significant risk of fetal complications, including premature birth and fetal death. In clinical practice, the diagnosis of ICP is predominantly based on the presence of pruritus in pregnant women and elevated serum total bile acid. However, this approach may result in missed or delayed diagnoses.

View Article and Find Full Text PDF

Background: Creatinine-based estimated glomerular filtration rate (eGFR) equations are widely used in clinical practice but exhibit inherent limitations. On the other side, measuring GFR is time consuming and not available in routine clinical practice. We developed and validated machine learning models to assess the trustworthiness (i.

View Article and Find Full Text PDF

Machine learning models for water safety enhancement.

Sci Rep

January 2025

Faculty of Industrial and Systems Engineering, Tarbiat Modares University, Tehran, 4117-13114, Iran.

Humans encounter both natural and artificial radiation sources, including cosmic rays, primordial radionuclides, and radiation generated by human activities. These radionuclides can infiltrate the human body through various pathways, potentially leading to cancer and genetic mutations. A study was conducted using random sampling to assess the concentrations of radioactive isotopes and heavy metals in mineral water from Iran, consumable at Arak City.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!