Ulcerative colitis (UC) is a chronic inflammatory disorder with an unsatisfactory cure rate and mucosal healing is a key treatment objective. Christensenellaceae minuta (C. minuta) has emerged as a next-generation of probiotic for maintaining intestinal health. We investigated the therapeutic efficacy of C. minuta in dextran sulfate sodium (DSS)-induced colitis, focusing on mucosal healing and the underlying mechanisms. C. minuta effectively alleviated colitis and promoted the regeneration of intestinal epithelial cells (IECs). Using 16S rRNA sequencing and metabolomics, we found that C. minuta administration increased beneficial bacteria, decreased pathogenic bacteria, and significantly elevated propionic acid levels. Additionally, C. minuta activated the PI3K-AKT pathway by upregulating systemic and local IGF-1 expression. Inhibiting the PI3K-AKT pathway reduced the therapeutic effects of C. minuta and impaired IEC regeneration. Furthermore, C. minuta promoted macrophage differentiation into the M2 phenotype and decreased proinflammatory factors. We propose that C. minuta alleviates colitis by regulating the gut microbiota, modulating macrophage differentiation, and enhancing mucosal healing by activating the PI3K-AKT pathway via IGF-1 secretion induced by short-chain fatty acids. Our findings provide evidence from animal experiments to support future clinical trials and the therapeutic translation of C. minuta.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.micres.2024.127927 | DOI Listing |
J Bone Miner Res
January 2025
Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.
Bone mineral density (BMD), an important marker of bone health, is regulated by a complex interaction of proteins. Plasma proteomic analyses can contribute to identification of proteins associated with changes in BMD. This may be especially informative in stages of bone accrual and peak BMD achievement (i.
View Article and Find Full Text PDFPLoS One
January 2025
GuiZhou Institute of Subtropical Crops, Guizhou Academy of Agricultural Sciences, Guiyang, China.
Background: Fracture disrupts the integrity and continuity of the bone, leading to symptoms such as pain, tenderness, swelling, and bruising. Rhizoma Musae is a medicinal material frequently utilized in the Miao ethnic region of Guizhou Province, China. However, its specific mechanism of action in treating fractures remains unknown.
View Article and Find Full Text PDFJ Clin Invest
January 2025
Herbert Irving Comprehensive Cancer Center, Division of Digestive and Liver, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, United States of America.
Colorectal cancer (CRC) remains a leading cause of cancer death due to metastatic spread. LIN28B is overexpressed in 30% of CRCs and promotes metastasis, yet its mechanisms remain unclear. In this study, we genetically modified CRC cell lines to overexpress LIN28B, resulting in enhanced PI3K/AKT pathway activation and liver metastasis in mice.
View Article and Find Full Text PDFIn Vitro Cell Dev Biol Anim
January 2025
College of Traditional Chinese Medicine, Xinjiang Uygur Autonomous Region, Xinjiang Medical University, Urumqi, 830063, China.
The aim of this study is to assess the impact of Tianxiangdan (TXD) on lipophagy in foam cells and its underlying mechanism in treating atherosclerosis, particularly focusing on its efficacy in lowering blood lipids. In vivo, ApoE-/- atherosclerosis mouse models were established for group intervention. Blood lipid levels of the mice were measured, lipid deposition and autophagy levels in atherosclerotic plaques were assessed, and co-localization of lipid droplets and autophagosomes was examined.
View Article and Find Full Text PDFBackground And Aim: The high rate of tumor growth results in an increased need for amino acids. As solute carriers (SLC) transporters are capable of transporting different amino acids, cancer may develop as a result of these transporters' over-expression due to their complex formation with other biological molecules. Therefore, this review investigated the role of SLC transporters in the progression of cancer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!