Diffusion coefficients for crystallized Coulomb plasmas are essential microphysics input for modeling white dwarf cores and neutron star crusts but are poorly understood. In this work we present a model for diffusion in Coulomb crystals. We show that melting and diffusion follow the same universal scaling such that diffusion is independent of screening. Our simulations show, contrary to prevailing wisdom, that the formation of vacancies is not suppressed by the large pressure. Rather, vacancy formation and hole diffusion is the dominant mode of self-diffusion in Coulomb crystals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.133.135301 | DOI Listing |
Phys Rev Lett
December 2024
School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332-0430, USA.
For moiré bilayer TMD superlattices, full-configuration-interaction (FCI) calculations are presented that take into account both the intra-moiré-quantum-dot (MQD) charge-carrier Coulombic interactions, as well as the crystal-field effect from the surrounding moiré pockets (inter-moiré-QD interactions). The effective computational embedding strategy introduced here allows for an FCI methodogy that enables the complete interpretation of the counterintuitive experimental observations reported recently in the context of moiré TMD superlattices at integer fillings ν=2 and 4. Two novel states of matter are reported: (i) a genuinely quantum-mechanical supercrystal of sliding Wigner molecules (WMs) for unstrained moiré TMD materials (when the crystal field is commensurate with the trilobal symmetry of the confining potential in each embedded MQD) and (ii) a supercrystal of pinned Wigner molecules when the crystal field is incommensurate with the trilobal symmetry or straining of the whole material is involved.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Guangdong University of Technology, school of chemical engineering and light industry, Panyu, Guangzhou University City Outer Ring Road No. 100, 510006, Gaungzhou, CHINA.
The limited cycling durability of Zn anode, attributed to the absence of a robust electrolyte-derived solid electrolyte interphase (SEI), remains the bottleneck for the practical deployment of aqueous zinc batteries. Herein, we highlight the role of local supersaturation in governing the fundamental crystallization chemistry of Zn4SO4(OH)6·xH2O (ZSH) and propose a subtle supersaturation-controlled morphology strategy to tailor the interphase chemistry of Zn anode. By judiciously creating local high-supersaturation environment with organic caprolactam to manipulate the precipitation manner of zinc sulfate hydroxide (ZSH), lattice-lattice matched heterogeneous nucleation of ZSH (001) and Zn (002) is realized in aqueous ZnSO4, producing a dense, pseudo-coincidence interface capable of functioning as decent SEI.
View Article and Find Full Text PDFR Soc Open Sci
December 2024
Graduate School of Science and Engineering, Yamagata University, Yamagata, Japan.
The physical and superconducting characteristics of SrPdP and SrPdAs compounds with applied pressure were calculated using density functional theory. The pressure effect on the structural properties of these compounds was investigated. The results show that both lattice constants and volume decrease almost linearly with increasing pressure.
View Article and Find Full Text PDFPhys Chem Chem Phys
December 2024
Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
Single-crystal structures of four alditol complexes are presented. In LuCl/galactitol and ScCl/-inositol complexes, μ-bridge-relevant deprotonations were observed. The polarization from two rare earth ions in the μ-bridge activates the chemically inert OH and promotes deprotonation.
View Article and Find Full Text PDFJ Phys Chem A
December 2024
MS 70A3317, Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.
The analysis of the solution absorption spectrum of the plutonyl ion in an aqueous environment was given by Eisenstein and Pryce (E&P) in 1968. In 2011 a new spectrum was published of the (PuO) ion in 1 M HClO. We have been provided with the original data of this spectrum and have found in the data a previously unreported low-lying transition at 7385 cm which we have assigned as a magnetic dipole transition.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!