Percolation-Induced PT Symmetry Breaking.

Phys Rev Lett

Department of Physics, National University of Singapore, Singapore 117551, Singapore.

Published: September 2024

AI Article Synopsis

  • The study introduces a novel approach where percolation, typically linked with phase transitions, can influence the dynamics of non-Hermitian systems by disrupting PT symmetry.
  • A key mechanism, termed topologically guided gain, allows chiral edge wave packets to gain or lose energy based on their topological alignment, leading to significant changes in system behavior.
  • This interconnectedness of chiral topology, gain direction, and interlayer tunneling results in a transition that merges smaller topological structures into larger ones, revealing new possibilities for utilizing topology in feedback system management.

Article Abstract

We propose a new avenue in which percolation, which has been much associated with critical phase transitions, can also dictate the asymptotic dynamics of non-Hermitian systems by breaking PT symmetry. Central to it is our newly designed mechanism of topologically guided gain, where chiral edge wave packets in a topological system experience non-Hermitian gain or loss based on how they are topologically steered. For sufficiently wide topological islands, this leads to irreversible growth due to positive feedback from interlayer tunneling. As such, a percolation transition that merges small topological islands into larger ones also drives the edge spectrum across a real to complex transition. Our discovery showcases intriguing dynamical consequences from the triple interplay of chiral topology, directed gain, and interlayer tunneling, and suggests new routes for the topology to be harnessed in the control of feedback systems.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.133.136602DOI Listing

Publication Analysis

Top Keywords

topological islands
8
interlayer tunneling
8
percolation-induced symmetry
4
symmetry breaking
4
breaking propose
4
propose avenue
4
avenue percolation
4
percolation associated
4
associated critical
4
critical phase
4

Similar Publications

The understanding of phenomena falling outside the Ginzburg-Landau paradigm of phase transitions represents a key challenge in condensed matter physics. A famous class of examples is constituted by the putative deconfined quantum critical points between two symmetry-broken phases in layered quantum magnets, such as pressurised SrCu(BO). Experiments find a weak first-order transition, which simulations of relevant microscopic models can reproduce.

View Article and Find Full Text PDF
Article Synopsis
  • This study investigates extrachromosomal circular DNA (eccDNA) in cancer cells, particularly focusing on its role in hydroquinone-induced TK6-HQ malignantly transformed cells, revealing how eccDNA may impact cancer progression and aging processes.
  • Researchers utilized Circle-seq to identify a substantial number of eccDNAs (669,179 total) in the TK6-HQ cells, with a significant number being less than 1000 base pairs, predominantly found on specific chromosomes and containing important genetic elements.
  • By combining DNA analysis and RNA sequencing, the study found that the suppression of a specific eccDNA (eccDNA_DTX1) using CRISPR/Cas9 led to reduced growth
View Article and Find Full Text PDF

The hybrid ferromagnet-superconductor heterostructures have attracted extensive attention as they potentially host topological superconductivity. Relevant experimental signatures have recently been reported in CrBr/NbSe ferromagnet-superconductor heterostructure, but controversies remain. Here, we reinvestigate CrBr/NbSe by an ultralow temperature scanning tunneling microscope with higher spatial and energy resolutions.

View Article and Find Full Text PDF

Aberrant DNA methylation contributes to gene expression deregulation in cancer. However, these alterations' precise regulatory role and clinical implications are still not fully understood. In this study, we performed expression-methylation Quantitative Trait Loci (emQTL) analysis to identify deregulated cancer-driving transcriptional networks linked to CpG demethylation pan-cancer.

View Article and Find Full Text PDF

Protein-protein interaction (PPI) networks are a fundamental resource for modeling cellular and molecular function, and a large and sophisticated toolbox has been developed to leverage their structure and topological organization to predict the functional roles of under-studied genes, proteins, and pathways. However, the overwhelming majority of experimentally-determined interactions from which such networks are constructed come from a small number of well-studied model organisms. Indeed, most species lack even a single experimentally-determined interaction in these databases, much less a network to enable the analysis of cellular function, and methods for computational PPI prediction are too noisy to apply directly.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!