AI Article Synopsis

  • Current methods for producing graphene nanoplatelets are not scalable or sustainable, hindering their industrial use in electronics and composites.
  • Researchers developed a new method using carboxylated cellulose nanocrystals (CNCs) from grass as a green dispersant for creating graphene, achieving a conversion yield of 13.4%.
  • This new technique not only improves efficiency and conductivity in printed electronics but also significantly reduces fossil fuel use and greenhouse gas emissions compared to traditional methods.

Article Abstract

The absence of scalable and environmentally sustainable methods for producing electronic-grade graphene nanoplatelets remains a barrier to the industrial-scale application of graphene in printed electronics and conductive composites. To address this unmet need, here we report the utilization of carboxylated cellulose nanocrystals (CNCs) extracted from the perennial tall grass × as a biorenewable dispersant for the aqueous liquid-phase exfoliation of few-layer graphene nanoplatelets. This CNC-based exfoliation procedure was optimized using a Bayesian machine learning model, resulting in a significant graphite-to-graphene conversion yield of 13.4% and a percolating graphene thin-film electrical conductivity of 3.4 × 10 S m. The as-exfoliated graphene dispersions were directly formulated into an aerosol jet printing ink using cellulose-based additives to achieve high-resolution printing (∼20 μm line width). Life cycle assessment of this CNC-based exfoliation method showed substantial improvements for fossil fuel consumption, greenhouse gas emissions, and water consumption compared to incumbent liquid-phase exfoliation methods for electronic-grade graphene nanoplatelets. Mechanistically, potential mean force calculations from molecular dynamics simulations reveal that the high exfoliation yield can be traced back to the favorable surface interactions between CNCs and graphene. Ultimately, the use of biorenewable CNCs for liquid-phase exfoliation will accelerate the scalable and eco-friendly manufacturing of graphene for electronically conductive applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.4c12664DOI Listing

Publication Analysis

Top Keywords

graphene nanoplatelets
12
liquid-phase exfoliation
12
graphene
9
carboxylated cellulose
8
cellulose nanocrystals
8
electronic-grade graphene
8
cnc-based exfoliation
8
exfoliation
6
biorenewable exfoliation
4
exfoliation electronic-grade
4

Similar Publications

This study examines the influence of nanofillers on the ultraviolet (UV) penetration depth of photopolymer resins used in stereolithography (SLA) 3D printing, and their impact on printability. Three nanofillers, multiwalled carbon nanotubes (MWCNT), graphene nanoplatelets (xGNP), and boron nitride nanoparticles (BNNP), were incorporated into a commercially available photopolymer resin to prepare nanocomposite formulations. The UV penetration depth (Dp) was assessed using the Windowpane method, revealing a significant reduction with the addition of nanofillers.

View Article and Find Full Text PDF

Analysis of Electrical Conductivity in Commercial Adhesives Incorporating Graphene Nanoplatelets for Industrial Applications.

Polymers (Basel)

December 2024

E.T.S. de Ingeniería y Diseño Industrial, Universidad Politécnica de Madrid (España), 28040 Madrid, Spain.

Polymers are often insulators, but this not a universal intrinsic characteristic of all polymers. For this work, the adhesives used, epoxy and polyurethane, do demonstrate this insulating characteristic. However, there has been significant interest in the development of conductive polymers, specifically adhesives, because of the potential properties and ease of processing of these polymers.

View Article and Find Full Text PDF

This work focuses on the incorporation of 2D carbon nanomaterials, such as graphene oxide (GO), reduced graphene oxide (rGO) and graphene nanoplatelets (GNPs), into polypropylene (PP) via melt mixing. The addition of these 2D carbon nanostructured networks offers a novel approach to enhancing/controlling the water vapor permeable capabilities of PP composite membranes, widely used in industrial applications, such as technical (building roof membranes) or medical (surgical gowns) textiles. The study investigates how the dispersion and concentration of these graphene nanomaterials within the PP matrix influence the microstructure and water vapor permeability (WVP) performance.

View Article and Find Full Text PDF

Unlabelled: The persistent challenge posed by antibiotic-resistant bacteria and tuberculosis necessitates innovative approaches to antimicrobial treatment. This study explores the synthesis and characterization of NiZrO₃ nanoparticles integrated with graphene nanoplatelets (GNP) and multi-walled carbon nanotubes (MWCNT), using a microwave-assisted green synthesis route, employing fenugreek () seed extract as a gelling agent. The synthesised nanocomposites were systematically analyzed using XRD, FT-IR, Raman spectroscopy, HR-SEM and HR TEM analysis to assess structural, optical, and morphological properties.

View Article and Find Full Text PDF

Enhancing CFRP damping with graphene nanoplatelets: experiments versus finite element analysis.

Nanotechnology

January 2025

Department of Chemical Engineering , University of Patras, Panepistimioupoli, Rio, GR-26504 Patras, Patra, Periféria Dhitikís Elládh, 26504, GREECE.

This study investigates the enhancement of damping properties in carbon fiber-reinforced polymer (CFRP) composites by incorporating graphene nanoplatelets (GNPs) into the epoxy matrix. Epoxy and CFRP specimens with varying GNP concentrations, were developed and tested through free vibration experiments to measure damping ratios. Additionally, a computational model based on the finite element method (FEM) was developed to simulate the damping behavior of these hybrid nanocomposites.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!