AI Article Synopsis

  • The TolC protein is an outer membrane efflux protein with high sequence conservation among pathogenic species, suggesting its importance in virulence.
  • * Structural modeling shows that it is composed of six β-strands and 10 α-helices, which supports its function similar to other bacterial efflux proteins.
  • * Recombinant TolC has potential as a diagnostic marker due to its ability to interact with host tissues and proteins, enhancing pathogen adhesion and immune evasion.

Article Abstract

The TolC family protein of is a type I outer membrane efflux protein. Phylogenetic analysis revealed significant sequence conservation among pathogenic species (83%-98% identity) compared with intermediate and saprophytic species. Structural modeling indicated a composition of six β-strands and 10 α-helices arranged in two repeats, resembling bacterial outer membrane efflux proteins. Recombinant TolC (rTolC), expressed in a heterologous host and purified via Ni-NTA chromatography, maintained its secondary structural integrity, as verified by circular dichroism spectroscopy. Polyclonal antibodies against rTolC detected native TolC expression in pathogenic but not in nonpathogenic ones. Immunoassays and detergent fractionation assays indicated surface localization of TolC. The rTolC's recognition by sera from leptospirosis-infected hosts across species suggests its utility as a diagnostic marker. Notably, rTolC demonstrated binding affinity for various extracellular matrix components, including collagen and chondroitin sulfate A, as well as plasma proteins such as factor H, C3b, and plasminogen, indicating potential roles in tissue adhesion and immune evasion. Functional assays demonstrated that rTolC-bound FH retained cofactor activity for C3b cleavage, highlighting TolC's role in complement regulation. The rTolC protein inhibited both the alternative and the classical pathway-mediated membrane attack complex (MAC) deposition . Blocking surface-expressed TolC on leptospires using specific antibodies reduced FH acquisition by and increased MAC deposition on the spirochete. These findings indicate that TolC contributes to leptospiral virulence by promoting host tissue colonization and evading the immune response, presenting it as a potential target for diagnostic and therapeutic strategies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11556070PMC
http://dx.doi.org/10.1128/iai.00419-24DOI Listing

Publication Analysis

Top Keywords

efflux protein
8
host tissue
8
outer membrane
8
membrane efflux
8
mac deposition
8
tolc
7
unveiling impact
4
impact tolc
4
tolc efflux
4
protein
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!