Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Emerging portable energy systems with integrated sustainability and improved safety have garnered growing interest in wearable electronics. Herein, a self-charging zinc-ion battery is successfully developed by integrating a PVDF-ZnO piezoelectric separator immersed in a quasi-solid-state hydrogel electrolyte (prepared using a 3 m Zn(CFSO)) solution that is sandwiched between a FeVO cathode and a zinc anode. This battery effectively captures energy through controlled tapping, eliminating the need for external charging and enabling sustainable energy storage. This self-charging battery can be charged up to 181.23 mV under continuous tapping for 300 s. Upon the cease of tapping, there is a slight decline in the induced potential, which then stabilizes and maintains a consistent potential. Five self-charging batteries connected in series and tapped simultaneously for 300 s generate a potential of 290 mV, whereas five batteries connected in series and tapped one by one induce a potential of 345 mV. This is the first time that a piezoelectric self-charging zinc-ion battery is reported. This study unveils a transformative strategy for realizing next-generation wearable electronics with a self-charging zinc-ion battery design that prioritizes both sustainability and safety.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.4c12656 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!