A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effect of the Dispersion Medium on NMR Relaxation Properties of Superparamagnetic Iron Oxide Nanoparticles between 0.24 mT and 14.1 T. | LitMetric

Due to weak exchange interactions, magnetite particles at a critical diameter of about 20 nm are considered monodomain. At this size, they exhibit a phenomenological magnetic property called superparamagnetism, making them useful as magnetic resonance imaging contrast agents, or MRI CAs. However, questions persist regarding the impact of using different physiological solvents and varying the environment in which these particles are dispersed on their performance, determined by their relaxivity. A colloidal suspension of superparamagnetic iron oxide nanoparticles (SPIONs) electrostatically stabilized by citrate ligand was synthesized using a fast, reliable, and reproducible developed microwave approach, ensuring high stability over time at pH 7. We studied the effects of three physiological media on these MRI CAs. Ultrapure water was used for the synthesis, while phosphate-buffered saline and physiological liquid were used to disperse the nanoparticles, as these media contain essential electrolytes for the functioning of the human body. The SPIONs underwent systematic characterizations to determine their physicochemical and magnetic properties. This study reports the longitudinal relaxivities of SPIONs at medically relevant magnetic field strengths. Field dependence of their relaxivity (efficacy) was evaluated using a nuclear magnetic resonance dispersion (NMRD) profile measured over a wide range of proton resonance frequencies between 5 kHz and 600 MHz. The Roch et al. model (Roch, A.; et al. , 5403-5411) was used to analyze the NMRD profile and evaluate the impact of SPIONs on water proton relaxation in the different redispersion media. It was observed in this study that the dynamics of water protons are not influenced by the redispersion media of these citrate-coated SPIONs. However, the presence of salt ions notably reduces their relaxivities by lowering the saturation magnetization of SPIONs.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.4c02448DOI Listing

Publication Analysis

Top Keywords

superparamagnetic iron
8
iron oxide
8
oxide nanoparticles
8
magnetic resonance
8
mri cas
8
nmrd profile
8
redispersion media
8
spions
6
magnetic
5
dispersion medium
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!