Previous studies have shown beneficial effects of empagliflozin (Empa), a selective inhibitor of the sodium-glucose cotransporter 2 (SGLT2), on diabetes and cardiovascular outcomes in patients with diabetes. However, whether Empa could ameliorate diabetes mellitus (DM)-induced male spermatogenesis dysfunction remains unclear. Our study aimed to investigate the effect of Empa in the development of DM-induced male spermatogenesis dysfunction and to reveal the molecular mechanisms. DM mice were orally treated with Empa to investigate the effects of Empa on DM-induced male mice spermatogenesis dysfunction. We employed a cardiac-specific C1q/tumor necrosis factor-related protein 9 (CTRP9)-deficient mouse model and a cardiac-specific CTRP9 overexpression mouse model to investigate its role in the protection of Empa against diabetes-induced male subfertility. We found that Empa treatment could improve DM-induced male mice subfertility. Interestingly, we discovered that cardiac-derived CTRP9 was decreased in DM mice and this decrease was prevented by Empa treatment. A CTRP9 blocking antibody or cardiac-specific depletion of CTRP9 abolished the protection of Empa on DM-induced male subfertility. Cardiac-specific CTRP9 overexpression ameliorated DM-induced male subfertility. Mechanistically, we identified that cardiac-derived CTRP9 increased steroidogenesis in mice with diabetes in a PKA-dependent manner. We also provided direct evidence that activation of AMP activated protein kinase α (AMPKα)/nuclear factor (erythroid-derived 2)-like 2 (Nrf2) signalling pathway by CTRP9 was responsible for the attenuation of ferroptosis in Leydig cells. In conclusions, we supposed that Empa was a potential therapeutic agent against DM-induced male mice spermatogenesis dysfunction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1042/CS20241477 | DOI Listing |
Curr Res Pharmacol Drug Discov
December 2024
Pregnancy Health Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.
Background: Asprosin, a novel adipokine released under fasting conditions, may play a significant role in the pathophysiology of type 2 diabetes mellitus (T2DM). The objective of this study is to investigate the effects of metformin on serum asprosin levels and FBN1 gene expression in white adipose tissue in male rats.
Methods: Thirty-two male Wistar rats were randomly and equally divided into four groups (n = 8): 1.
Nutrients
November 2024
Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
Background/objective: There is strong evidence that the tripartite interaction between glucose homeostasis, gut microbiota, and the host immune system plays a critical role in the pathophysiology of type 2 diabetes mellitus (T2DM). We reported previously that peanut shell extract (PSE) improves mitochondrial function in db/db mice by suppressing oxidative stress and inflammation in the liver, brain, and white adipose tissue. This study evaluated the impacts of PSE supplementation on glucose homeostasis, liver histology, intestinal microbiome composition, and the innate immune response in diabetic mice.
View Article and Find Full Text PDFReprod Biol
November 2024
Department of Biology, Faculty of Science, Arak University, Arak 384817758, Iran.
Phytomedicine
December 2024
Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China. Electronic address:
Background: Male infertility is a worldwide concern that is associated with a decline in sperm quality. Environmental pollutants such as deltamethrin (DM) have harmful effects on male reproductive organs. By maintaining intracellular redox homeostasis, ginkgo biloba extract (GBE) can alleviate male reproductive dysfunction.
View Article and Find Full Text PDFLife Sci
January 2025
Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan; Department of Stem Cell Biology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan. Electronic address:
Aims: Diabetes mellitus (DM) links the risk of cardiovascular diseases. Inverse to the enhanced expression of matrix metalloproteinases (MMPs), the development of aortic aneurysm is lower in diabetic population. We examined the hypothesis that DM-induced alteration of metal ion levels declines the activity of MMPs to decrease aortic aneurysm risk.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!