In this study, ultrafine linear nanostructured SiC with high wettability and large specific surface area were synthesized via the carbothermal reduction method. These nanowires were impregnated with NaSO ⋅ 10HO, CaCl ⋅ 6HO, MgCl ⋅ 6H2O, and CaMgCl ⋅ 12HO to obtain composite phase change materials (CPCMs), which demonstrated improved phase separation and significantly reduced supercooling. In particular, the supercooling degree of CaCl ⋅ 6HO was minimized to 0.1 °C. The SiC nanowires effectively prevented issues of dehydration and deliquescence in hydrated salts. The thermal storage capacities of the CPCMs exceeded 90 %, with NaSO ⋅ 10HO and MgCl ⋅ 6HO reaching 107.10 % and 103.35 %, respectively. Furthermore, the CPCMs exhibited greater sensitivity to changes in temperature compared with the pure hydrated salt phase change materials (PCMs). These results indicate that ultra-fine SiC nanowires can act as a versatile carrier for hydrated salt PCMs at low and intermediate temperatures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cplu.202400542 | DOI Listing |
Small
December 2024
Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo, 315211, P. R. China.
In the realm of photodetector (PD) technology, photoelectrochemical (PEC) PDs have garnered attention owing to their inherent advantages. Advances in this field depend on functional nanostructured materials, which are pivotal in improving the separation and transport of photogenerated electron-hole pairs to improve device efficiency. Herein, a highly photosensitive PEC UV PD is built using integrated self-supporting SiC/ZnS heterojunction nanowire array photoelectrodes through anodization and chemical deposition.
View Article and Find Full Text PDFJ Mater Chem B
January 2025
Department of Gerontology, Xinhua Hospital affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200082, P. R. China.
An acute wound is the most common type of skin injury. Developing wound dressings with excellent mechanical properties, wound protection, comfort, angiogenic capacity and therapeutic effects is significant for effective treatments, yet remains challenging. Herein, we have designed a novel HAP-Alg composite dressing comprising a complementary ultralong hydroxyapatite (HAP) nanowire bio-paper and calcium alginate hydrogel.
View Article and Find Full Text PDFSci Rep
November 2024
Department of Physics and Research Institute for Basic Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea.
SiC structures, including nanowires and films, can be effectively grown on Si substrates through carbonization. However, growth parameters other than temperature, which influence the preferential formation of SiC nanowires or films, have not yet been identified. In this work, we investigate SiC synthesis via Si carbonization using methane (CH) by varying the growth temperature and the hydrogen to methane gas flow ratio (H/CH).
View Article and Find Full Text PDFSmall
January 2025
College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China.
Intracellular pH (pHi) is an essential indicator of cellular metabolic activity, as its transient or small shift can significantly impact cellular homeostasis and reflect the cellular events. Real-time and precise tracking of these rapid pH changes within a single living cell is therefore important. However, achieving high dynamic response performance (subsecond) pH detection inside a living cell with high accuracy remains a challenge.
View Article and Find Full Text PDFNanomicro Lett
October 2024
State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, People's Republic of China.
With vigorous developments in nanotechnology, the elaborate regulation of microstructure shows attractive potential in the design of electromagnetic wave absorbers. Herein, a hierarchical porous structure and composite heterogeneous interface are constructed successfully to optimize the electromagnetic loss capacity. The macro-micro-synergistic graphene aerogel formed by the ice template‑assisted 3D printing strategy is cut by silicon carbide nanowires (SiC) grown in situ, while boron nitride (BN) interfacial structure is introduced on graphene nanoplates.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!