Frustrated Lewis Pair Mediated f-p-d Orbital Coupling: Achieving Selective Seawater Oxidation and Breaking *OH and *OOH Scaling Relationship.

Angew Chem Int Ed Engl

Key Laboratory of Eco-chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemical Engineering, Qingdao University of Science and Technology, 266042, Qingdao, PR China.

Published: January 2025

The development of oxygen evolution reaction (OER) electrocatalyst for seawater electrolysis plays a crucial role in producing renewable hydrogen energy. However, during the seawater electrolysis process, the anode inevitably undergoes chloride oxidation reaction (ClOR) due to Cl adsorption, making the seawater electrolysis process difficult to sustain. Inspired by the selective permeability of cell membranes, we propose a biomimetic design of frustrated Lewis pairs (FLPs) layers for selective seawater oxidation. Combining experimental results and molecular dynamics simulations, it has been demonstrated that cerium dioxide layers with FLPs sites can decompose water molecules, capture hydroxyl anions, and repel chloride ions simultaneously. DFT theoretical analysis indicates that the FLP sites regulate the Ce 4 f-O 2p-Ni 3d gradient orbital coupling, providing additional oxygen non-bonding (O) to stabilize the Ni-O bond and optimize the adsorption strength of intermediates, thereby breaking the *OH and *OOH scaling relationship. The assembled anion exchange membrane electrolyzers exhibit an efficiency of 95.7 % at a current density of 0.1 A cm and can stably operate for 250 hours at a current density of 0.2 A cm.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202414721DOI Listing

Publication Analysis

Top Keywords

seawater electrolysis
12
frustrated lewis
8
orbital coupling
8
selective seawater
8
seawater oxidation
8
breaking *oh
8
*oh *ooh
8
*ooh scaling
8
scaling relationship
8
electrolysis process
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!