Coordination environment of metal atoms is core for designing high-performance single-atom catalysts (SACs), while metal-support interaction also has an important effect on structure-function relationship. Nevertheless, the interaction effect of metal-support is mostly ignored. Through synergistic regulation of coordination environment and metal-support interaction, Mn SAC with atom-dispersed Mn-N sites on dopamine (DA) support is synthesized for sensitive and selective DA oxidation based on theoretical calculations and experimental explorations. MnN presents the more optimal catalytic site for DA oxidation than other coordination conditions, enhancing sensitivity including a wide range, a low limit of detection, and particularly a very low catalytic potential. The construction of Mn-N active sites on DA carbon promotes the coupling between Mn metal atoms and DA support, decreasing work function, facilitating electron exchange, shortening response time, and boosting selectivity. Both the catalytic mechanism of Mn SAC toward DA and the relation construction of catalyst's structure and catalytic function are established.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202405488DOI Listing

Publication Analysis

Top Keywords

metal-support interaction
12
mn-n sites
8
sensitive selective
8
coordination environment
8
metal atoms
8
synergistic coordination
4
metal-support
4
coordination metal-support
4
interaction
4
interaction engineering
4

Similar Publications

Fermi Level Equilibration and Charge Transfer at the Exsolved Metal-Oxide Interface.

J Am Chem Soc

January 2025

Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.

Exsolution is a promising approach for fabricating oxide-supported metal nanocatalysts through redox-driven metal precipitation. A defining feature of exsolved nanocatalysts is their anchored metal-oxide interface, which exhibits exceptional structural stability in (electro)catalysis. However, the electronic interactions at this unique interface remain unclear, despite their known impact on catalytic performance.

View Article and Find Full Text PDF

Crafting highly dispersed active metal sites on catalysts is an optimal method for improving the catalytic reactivity and stability, as it would improve atomic utilization efficiency, enhance reactant adsorption and activation ability through unique geometric and electronic properties. In this study, two synthesis methods were employed (ammonia evaporation (AE) and the impregnation method (IM)) to load Rh species onto the ZSM-5 support in order to attain tunable dispersivity, during which a 1.25-fold increase in the total yield of liquid oxygenated products (32 433.

View Article and Find Full Text PDF

Adjustment of Molecular Sorption Equilibrium on Catalyst Surface for Boosting Catalysis.

Acc Chem Res

January 2025

Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.

ConspectusFor chemical reactions with complex pathways, it is extremely difficult to adjust the catalytic performance. The previous strategies on this issue mainly focused on modifying the fine structures of the catalysts, including optimization of the geometric/electronic structure of the metal nanoparticles (NPs), regulation of the chemical composition/morphology of the supports, and/or adjustment of the metal-support interactions to modulate the reaction kinetics on the catalyst surface. Although significant advances have been achieved, the catalytic performance is still unsatisfactory.

View Article and Find Full Text PDF

Heterogeneous catalysts have emerged as a potential key for closing the carbon cycle by converting carbon dioxide (CO) into value-added chemicals. In this work, we report a highly active and stable ceria (CeO)-based electronically tuned trimetallic catalyst for CO to CO conversion. A unique distribution of electron density between the defective ceria support and the trimetallic nanoparticles (of Ni, Cu, Zn) was established by creating the strong metal support interaction (SMSI) between them.

View Article and Find Full Text PDF

Establishing optimized metal-support interaction (MSI) between active sites and the substrate is essential for modulating the adsorption properties of key reaction intermediates during catalysis, thereby enhancing the catalytic performance. In this study, catalyst composites with varying degrees of MSI are constructed using ruthenium (Ru) and different carbon nanotubes, and their performance for alkaline hydrogen evolution reaction (HER) is systematically investigated. Detailed kinetic assessments reveal that catalysts with a strong MSI exhibit superior HER activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!