Background: Observational studies have shown a controversial relationship between dietary fat intake and Alzheimer's disease, and the causal effects are unclear.
Aims: To assess the causal effects of total fat, saturated fat and polyunsaturated fat (PUF) intakes on the risk of Alzheimer's disease.
Method: A two-sample Mendelian randomisation analysis was performed using genome-wide association study summary statistics on different types of fat intake from UK Biobank ( = 51 413) and on late-onset Alzheimer's disease (LOAD; 4282 cases, = 307 112) and all forms of Alzheimer's disease (6281 cases, = 309 154) from the FinnGen consortium. In addition, a multivariable Mendelian randomisation (MVMR) analysis was conducted to estimate the effects independent of carbohydrate and protein intakes.
Results: Genetically predicted per standard deviation increase in the total fat and saturated fat intakes were associated with 44 and 38% higher risks of LOAD (total fat: odds ratio = 1.44, 95% CI 1.03-2.02; saturated fat: odds ratio = 1.38, 95% CI 1.002-1.90; = 0.049). The associations remained significant in the MVMR analysis (total fat: odds ratio = 3.31, 95% CI 1.74-6.29; saturated fat: odds ratio = 2.04, 95% CI 1.16-3.59). Total fat and saturated fat intakes were associated with a higher risk of all forms of Alzheimer's disease in the MVMR analysis (total fat: odds ratio = 2.09, 95% CI 1.22-3.57; saturated fat: odds ratio = 1.60, 95% CI 1.01-2.52). The PUF intake was not associated with LOAD or all forms of Alzheimer's disease.
Conclusions: This study indicated that total dietary fat intake, especially saturated fat, contributed to the risk of Alzheimer's disease, and the effects were independent of other nutrients. These findings informed prevention strategies and management for Alzheimer's disease directly towards reducing dietary saturated fat intake.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1192/bjp.2024.163 | DOI Listing |
Postepy Biochem
December 2024
Department of Biochemistry and Nutrition, Centre for Preclinical Research and Technology, Medical University of Warsaw, Warsaw, Poland.
Prostaglandyny są hormonami występującymi niemal we wszystkich ssaczych tkankach. Jako cząsteczki sygnałowe odgrywają one kluczową rolę w regulacji wielu procesów fizjologicznych, m. in.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Dipartimento di Farmacia, Università degli Studi di Salerno, via Giovanni Paolo II n. 132, 84084 Fisciano, SA, Italy.
The Italian Carciofo di Paestum () PGI, an artichoke variety from the Campania region, was investigated for its potential to reuse by-products for food supplements. EtOH:HO 50:50 and 75:25 extracts of its leaves were analyzed for phenolic and flavonoid content and antioxidant activity (TEAC: 1.90 and 1.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Department of Chemical Technology, Faculty of Chemistry, University of Plovdiv "Paisii Hilendarski", 24 Tzar Asen Street, 4000 Plovdiv, Bulgaria.
The Asteraceae family is a large plant family, with over 1600 genera and 25,000 species, most of which are generally herbaceous plants. This family's members are widely used in the human diet and medicine. One of the most popular representatives is L.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Unidad Médica de Alta Especialidad, Centro Médico Ignacio García Téllez, Instituto Mexicano del Seguro Social, Mérida 97150, Yucatán, Mexico.
(1) Background: Carbapenem-resistant (CBRAB) and (CBRPA) are critical and high-priority pathogens that require new therapeutic developments. Medicinal plants are valuable pharmaceutical resources. This study explored the anti-infective properties of Mayan plants, , and .
View Article and Find Full Text PDFPlants (Basel)
December 2024
Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia.
(β-ketoacyl-acyl carrier protein (ACP) synthases II), (fatty acid thioesterases), (stearoyl-ACP desaturase), and (fatty acid desaturases) are the vital gene families involved in fatty acid (FA) synthesis in L. However, information on the number and location of these genes and which ones are key to the formation of FAs in fruit seeds and pulp was not complete. Our study aimed to solve this issue using the available genomic sequences and transcriptome data that we obtained.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!