Microorganisms associated with animals harbour a unique set of functional traits pivotal for the normal functioning of their hosts. This realisation has led researchers to hypothesise that animal-associated microbial communities may boost the capacity of their hosts to acclimatise and adapt to environmental changes, two eco-evolutionary processes with significant applied relevance. Aiming to assess the importance of microorganisms for wild vertebrate conservation, we conducted a quantitative systematic review to evaluate the scientific evidence for the contribution of gut microorganisms to the acclimation and adaptation capacity of wild vertebrate hosts. After screening 1974 publications, we scrutinised the 109 studies that met the inclusion criteria based on 10 metrics encompassing study design, methodology and reproducibility. We found that the studies published so far were not able to resolve the contribution of gut microorganisms due to insufficient study design and research methods for addressing the hypothesis. Our findings underscore the limited application to date of microbiome knowledge in vertebrate conservation and management, highlighting the need for a paradigm shift in research approaches. Considering these results, we advocate for a shift from observational studies to experimental manipulations, where fitness or related indicators are measured, coupled with an update in molecular techniques used to analyse microbial functions. In addition, closer collaboration with conservation managers and practitioners from the inception of the project is needed to encourage meaningful application of microbiome knowledge in adaptive wildlife conservation management.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11464772PMC
http://dx.doi.org/10.1111/eva.70025DOI Listing

Publication Analysis

Top Keywords

acclimation adaptation
8
wild vertebrate
8
vertebrate conservation
8
contribution gut
8
gut microorganisms
8
study design
8
application microbiome
8
microbiome knowledge
8
conservation management
8
quantitative synthesis
4

Similar Publications

Rice salt tolerance is highly anticipated to meet global demand in response to decreasing farmland and soil salinization. Therefore, dissecting the genetic loci controlling salt tolerance in rice for improving productivity is of utmost importance. Here, we evaluated six salt-tolerance-related traits of a biparental mapping population comprising 280 F2 rice individuals (Oryza sativa L.

View Article and Find Full Text PDF

Background: In holobiont, microbiota is known to play a central role on the health and immunity of its host. Then, understanding the microbiota, its dynamic according to the environmental conditions and its link to the immunity would help to react to potential dysbiosis of aquacultured species. While the gut microbiota is highly studied, in marine invertebrates the hemolymph microbiota is often set aside even if it remains an important actor of the hemolymph homeostasis.

View Article and Find Full Text PDF

Validation of Aerobic Capacity (VO2max) and Pulse Oximetry in Wearable Technology.

Sensors (Basel)

January 2025

School of Integrated Health Sciences, Department of Kinesiology and Nutrition Sciences, University of Nevada, Las Vegas, NV 89154, USA.

Introduction: As wearable technology becomes increasingly popular and sophisticated, independent validation is needed to determine its accuracy and potential applications. Therefore, the purpose of this study was to evaluate the accuracy (validity) of VO2max estimates and blood oxygen saturation measured via pulse oximetry using the Garmin fēnix 6 with a general population participant pool.

Methods: We recruited apparently healthy individuals (both active and sedentary) for VO2max (n = 19) and pulse oximetry testing (n = 22).

View Article and Find Full Text PDF

Systematic Analysis of Cotton RING E3 Ubiquitin Ligase Genes Reveals Their Potential Involvement in Salt Stress Tolerance.

Int J Mol Sci

January 2025

Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Ministry of Agriculture and Rural Affairs, Institute of Industrial Crops Shandong Academy of Agricultural Sciences, Jinan 250100, China.

The Really Interesting New Gene (RING) E3 ubiquitin ligases represent the largest class of E3 ubiquitin ligases involved in protein degradation and play a pivotal role in plant growth, development, and environmental responses. Despite extensive studies in numerous plant species, the functions of RING E3 ligases in cotton remain largely unknown. In this study, we performed systematic identification, characterization, and expression analysis of genes in cotton.

View Article and Find Full Text PDF

Salt tolerance is a critical trait for plant survival and productivity in saline environments. Development of salt tolerant crops is a practical strategy for addressing soil salinity issues. In this study, RNA-Seq analysis was performed using two wheat cultivars with contrasting salt tolerance (Neixiang188, tolerant and Barra, sensitive) at 6 h and 24 h after salinity treatment to determine the genetic variations reflected in the RNA expression patterns and identify key genes associated with salt tolerance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!