AI Article Synopsis

  • * The authors developed a new, budget-friendly material system using sodium alginate hydrogel and coconut fat that allows for accurate adjustment of imaging properties for CT and ultrasound independently.
  • * This innovative approach is particularly advantageous in low-resource settings, as the materials are affordable (less than $1 USD/kg) and easily accessible, enabling the creation of versatile phantoms to improve surgical training and patient care.

Article Abstract

Medical phantoms mimic aspects of procedures like computed tomography (CT), ultrasound (US) imaging, and surgical practices. However, the materials for current commercial phantoms are expensive and the fabrication with these is complex and lacks versatility. Therefore, existing material solutions are not suitable for creating patient-specific phantoms. We present a novel and cost-effective material system (utilizing ubiquitous sodium alginate hydrogel and coconut fat) with independently and accurately tailorable CT, US, and mechanical properties. By varying the concentration of alginate, cross-linker, and coconut fat, the radiological parameters and the elastic modulus were adjusted independently in a wide range. The independence was demonstrated by creating phantoms with features hidden in US, while visible in CT imaging and vice versa. This system is particularly beneficial in resource-scarce areas since the materials are cheap (<$ 1 USD/kg) and easy to obtain, offering realistic and versatile phantoms to practice surgeries and ultimately enhance patient care.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11463687PMC
http://dx.doi.org/10.1021/acsmaterialslett.4c01660DOI Listing

Publication Analysis

Top Keywords

medical phantoms
8
coconut fat
8
phantoms
5
hydrogel system
4
system independent
4
independent tailoring
4
tailoring mechanics
4
mechanics contrasts
4
contrasts affordable
4
affordable medical
4

Similar Publications

Objectives: To survey kilovoltage (kV) radiotherapy in the UK, updating a 2016 study, focussing on radiotherapy physics, including equipment quality control (QC) and radiation dosimetry, with information on installed equipment and clinical activity.

Methods: All UK radiotherapy physics departments (n = 68) were invited to complete a comprehensive survey. An analysis of the installed equipment base, patient numbers, clinical activity, QC testing and radiation dosimetry processes were undertaken.

View Article and Find Full Text PDF

Purpose: With the widespread introduction of dual energy computed tomography (DECT), applications utilizing the spectral information to perform material decomposition became available. Among these, a popular application is to decompose contrast-enhanced CT images into virtual non-contrast (VNC) or virtual non-iodine images and into iodine maps. In 2021, photon-counting CT (PCCT) was introduced, which is another spectral CT modality.

View Article and Find Full Text PDF

Background: Diffusion-weighted (DW) turbo-spin-echo (TSE) imaging offers improved geometric fidelity compared to single-shot echo-planar-imaging (EPI). However, it suffers from low signal-to-noise ratio (SNR) and prolonged acquisition times, thereby restricting its applications in diagnosis and MRI-guided radiotherapy (MRgRT).

Purpose: To develop a joint k-b space reconstruction algorithm for concurrent reconstruction of DW-TSE images and the apparent diffusion coefficient (ADC) map with enhanced image quality and more accurate quantitative measurements.

View Article and Find Full Text PDF

Deep proximal gradient network for absorption coefficient recovery in photoacoustic tomography.

Phys Med Biol

January 2025

North China Electric Power University - Baoding Campus, North China Electric Power University, Baoding, Hebei Province, P.R.China, Baoding, Hebei, 071003, CHINA.

Objective: The optical absorption properties of biological tissues in photoacoustic tomography are typically quantified by inverting acoustic measurements. Conventional approaches to solving the inverse problem of forward optical models often involve iterative optimization. However, these methods are hindered by several challenges, including high computational demands, the need for regularization, and sensitivity to both the accuracy of the forward model and the completeness of the measurement data.

View Article and Find Full Text PDF

Evaluation of dose calculation method with a combination of Monte Carlo method and removal-diffusion equation in heterogeneous geometry for boron neutron capture therapy.

Biomed Phys Eng Express

January 2025

Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2-1010 Asashiro-nishi, Kumatori-cho, Sennan-gun, Osaka, 590-0494, JAPAN.

Clinical research in boron neutron capture therapy (BNCT) has been conducted worldwide. Currently, the Monte Carlo (MC) method is the only dose calculation algorithm implemented in the treatment planning system for the clinical treatment of BNCT. We previously developed the MC-RD calculation method, which combines the MC method and the removal-diffusion (RD) equation, for fast dose calculation in BNCT.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!