A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Artificial Intelligence in Predicting the Mode of Delivery: A Systematic Review. | LitMetric

AI Article Synopsis

  • The integration of AI into obstetric care has the potential to significantly improve clinical decision-making and maternal and neonatal outcomes compared to traditional prediction methods.
  • A systematic review of 18 studies from January 2010 to July 2024 evaluated AI applications in predicting the mode of delivery, showing that AI models achieved high accuracy rates (over 90%) and outperformed traditional methods.
  • Key predictors for delivery mode included factors like maternal age and fetal weight, with notable AI models such as the Adana System and CatBoost demonstrating enhanced prediction capabilities, while future research should aim to standardize data collection in this field.

Article Abstract

The integration of artificial intelligence (AI) into obstetric care offers significant potential to enhance clinical decision-making and optimize maternal and neonatal outcomes. Traditional prediction methods for mode of delivery often rely on subjective clinical judgment and limited statistical models, which may not fully capture complex patient data. This systematic review aims to evaluate the current state of research on AI applications in predicting the mode of delivery, comparing the performance of AI models with traditional methods, and identifying gaps for future research. A comprehensive literature search was conducted across PubMed, Google Scholar, Web of Science, and Scopus databases, covering publications from January 2010 to July 2024. Inclusion criteria were studies employing AI techniques to predict the mode of delivery, published in peer-reviewed journals, and involving human subjects. Studies were assessed for quality using the Prediction Model Risk of Bias Assessment Tool (PROBAST), and data were synthesized narratively due to heterogeneity. In total, 18 studies met the inclusion criteria, employing various AI models such as logistic regression, random forest, gradient boosting, and neural networks. Sample sizes ranged from 40 to 94,480 participants across diverse geographic settings. AI models demonstrated high accuracy rates, often exceeding 90%, and strong predictive metrics (area under the curve (AUC) values from 0.745 to 0.932). Key predictors included maternal age, gravidity, parity, gestational age, labor induction type, and fetal weight. Notable models like the Adana System and Categorical Boosting (CatBoost, Yandex LLC, Moscow, Russia) highlighted the effectiveness of AI in enhancing prediction accuracy and supporting clinical decisions. AI models significantly outperform traditional statistical methods in predicting the mode of delivery, providing a robust tool for obstetric care. Future research should focus on standardizing data collection, improving model interpretability, addressing ethical concerns, and ensuring fairness in AI predictions to enhance clinical trust and application.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11466496PMC
http://dx.doi.org/10.7759/cureus.69115DOI Listing

Publication Analysis

Top Keywords

mode delivery
20
predicting mode
12
artificial intelligence
8
systematic review
8
obstetric care
8
enhance clinical
8
inclusion criteria
8
models
6
mode
5
delivery
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!