Pyridoxal phosphate (PLP)-dependent enzymes play essential roles in metabolism and have found applications for organic synthesis and as enzyme therapeutics. The vinylglycine ketimine (VGK) subfamily hosts a growing set of enzymes that play diverse roles in primary and secondary metabolism. However, the molecular determinates of substrate specificity and the complex acid-base chemistry that enables VGK catalysis remain enigmatic. We use a recently discovered amino acid γ-lyase as a model system to probe catalysis in this enzyme family. We discovered that two stereochemically distinct proton transfer pathways occur. Combined kinetic and spectroscopic analysis revealed that progression through the catalytic cycle is correlated with the presence of an H-bond donor after Cγ of an amino acid substrate, suggesting substrate binding is kinetically coupled to a conformational change. High-resolution X-ray crystallography shows that cystathionine-γ-lyases generate an -trans intermediate and that this geometry is likely conserved throughout the VGK family. An H-bond acceptor in the active site templates substrate binding but does so by pre-organizing substrates from catalytically productive orientations. Mutagenesis eliminates this pre-organization, such that there is a relaxation of the substrate specificity, but an increase in for diverse substrates. We exploit this information to perform preparative scale α,β,β-tri-deuteration of polar amino acids. Together, these data untangle a complex mode of substrate specificity and provide a foundation for the future study and applications of VGK enzymes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11464002 | PMC |
http://dx.doi.org/10.1021/acscatal.4c02281 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA 30602.
is a dominant member of the human gut microbiome and produces short-chain fatty acids (SCFAs). These promote immune system function and inhibit inflammation, making this microbe important for human health. Lactate is a primary source of gut SCFAs but its utilization by has not been explored.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Biotechnology and Bioengineering, Chonnam National University, Gwangju, Republic of Korea.
With the advancement of genetic code expansion, the field is progressing towards incorporating multiple non-canonical amino acids (ncAAs). The specificity of aminoacyl-tRNA synthetases (aaRSs) towards ncAAs is a critical factor, as engineered aaRSs frequently show polyspecificity, complicating the precise incorporation of multiple ncAAs. To address this challenge, predicting binding affinity can be beneficial.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
() is a major pathogenic bacterium responsible for bacterial foodborne diseases, making its rapid, specific, and accurate detection crucial. In this study, we develop a ratiometric biosensor based on the recombinase polymerase amplification-clustered regularly interspaced short palindromic repeats/CRISPR associated protein 12a (RPA-CRISPR/Cas12a) system and Eu-metal-organic framework (Eu-MOF) fluorescent nanomaterials for the high-sensitivity detection of , combining with RPA for efficient isothermal amplification, this sensor enhances specificity and sensitivity by utilizing the target activation of CRISPR/Cas12a. The Eu-MOF serves a dual function, providing stable red fluorescence as a reference signal and adsorbing FAM-labeled probes for fluorescence quenching, forming a dual-signal system that significantly reduces background interference.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China.
Nitrilase is extensively applied across diverse sectors owing to its unique catalytic properties. Nevertheless, in industrial production, nitrilases often face issues such as low catalytic efficiency, limited substrate range, suboptimal selectivity, and side reaction products, which have garnered heightened attention. With the widespread recognition that the structure of enzymes has a direct impact on their catalytic properties, an increasing number of researchers are beginning to optimize the functional characteristics of nitrilases by modifying their structures, in order to meet specific industrial or biotechnology application needs.
View Article and Find Full Text PDFCurr Microbiol
January 2025
Department of Food Engineering and Technology, Institute of Chemical Technology, Matunga, Mumbai, Maharashtra, India.
The recent emergence of bile salt hydrolase (BSH) enzyme as a therapeutic target reflects its unbound potential in mitigating hypercholesterolemia, obesity, and gastrointestinal issues. However, to bolster its industrial application, optimization of BSH assay lays the cornerstone for enhancing sensitivity, specificity, and reproducibility. The current study delved into optimizing the BSH assay parameters utilizing response surface methodology (RSM) and one-factor-at-a-time (OFAT) method for two novel, natural BSH producers, Heyndrickxia coagulans ATCC 7050 and Lactiplantibacillus plantarum ATCC 10012.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!