The tensor as an informational resource.

PNAS Nexus

Department of Mathematical Sciences, University of Copenhagen, Copenhagen 2100, Denmark.

Published: September 2024

A tensor is a multidimensional array of numbers that can be used to store data, encode a computational relation, and represent quantum entanglement. In this sense, a tensor can be viewed as valuable resource whose transformation can lead to an understanding of structure in data, computational complexity, and quantum information. In order to facilitate the understanding of this resource, we propose a family of information-theoretically constructed preorders on tensors, which can be used to compare tensors with each other and to assess the existence of transformations between them. The construction places copies of a given tensor at the edges of a hypergraph and allows transformations at the vertices. A preorder is then induced by the transformations possible in a given growing sequence of hypergraphs. The new family of preorders generalizes the asymptotic restriction preorder which Strassen defined in order to study the computational complexity of matrix multiplication. We derive general properties of the preorders and their associated asymptotic notions of tensor rank and view recent results on tensor rank nonadditivity, tensor networks, and algebraic complexity in this unifying frame. We hope that this work will provide a useful vantage point for exploring tensors in applied mathematics, physics, and computer science but also from a purely mathematical point of view.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11464988PMC
http://dx.doi.org/10.1093/pnasnexus/pgae254DOI Listing

Publication Analysis

Top Keywords

computational complexity
8
tensor rank
8
tensor
7
tensor informational
4
informational resource
4
resource tensor
4
tensor multidimensional
4
multidimensional array
4
array numbers
4
numbers store
4

Similar Publications

Background: Breast cancer is a frequently diagnosed malignant disease and the primary cause of mortality among women with cancer worldwide. The therapy options are influenced by the molecular subtype due to the intricate nature of the condition, which consists of various subtypes. By focusing on the activation of receptors, Epidermal Growth Factor Receptor (EGFR) tyrosine kinase can be utilized as an effective drug target for therapeutic purposes of breast cancer.

View Article and Find Full Text PDF

A planktonic population of bacteria can form a biofilm by adhesion and colonization. Proteins known as "adhesins" can bind to certain environmental structures, such as sugars, which will cause the bacteria to attach to the substrate. Quorum sensing is used to establish the population is dense enough to form a biofilm.

View Article and Find Full Text PDF

Purpose: The incidence of cancer, which is a serious public health concern, is increasing. A predictive analysis driven by machine learning was integrated with haematology parameters to create a method for the simultaneous diagnosis of several malignancies at different stages.

Patients And Methods: We analysed a newly collected dataset from various hospitals in Jordan comprising 19,537 laboratory reports (6,280 cancer and 13,257 noncancer cases).

View Article and Find Full Text PDF

The lexicon is an evolving symbolic system that expresses an unbounded set of emerging meanings with a limited vocabulary. As a result, words often extend to new meanings. Decades of research have suggested that word meaning extension is non-arbitrary, and recent work formalizes this process as cognitive models of semantic chaining whereby emerging meanings link to existing ones that are semantically close.

View Article and Find Full Text PDF

Mapping the 3D genome architecture.

Comput Struct Biotechnol J

December 2024

Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.

The spatial organization of the genome plays a critical role in regulating gene expression, cellular differentiation, and genome stability. This review provides an in-depth examination of the methodologies, computational tools, and frameworks developed to map the three-dimensional (3D) architecture of the genome, focusing on both ligation-based and ligation-free techniques. We also explore the limitations of these methods, including biases introduced by restriction enzyme digestion and ligation inefficiencies, and compare them to more recent ligation-free approaches such as Genome Architecture Mapping (GAM) and Split-Pool Recognition of Interactions by Tag Extension (SPRITE).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!