The grazed grasslands of Inner Mongolia offer a critical research setting for studying the impacts of long-term grazing on soil, hydraulic, vegetative, and meteorological variables, and potentially contribute to examine threshold responses to grazing activity or climate dynamics in colder Eurasian temperate grasslands. The dataset consists of long-term observations of soil temperature and moisture, as well as other related parameters across three scales: pedon, field, and catchment scale. This includes: i) At the pedon scale, data collection was conducted on five sites: long-term grazing exclusion since 1979 (UG79), short-term grazing exclusion since 1999 (UG99), continuous grazing (CG), heavy year-round grazing (HG), and moderate winter grazing (WG), from May 2004 to August 2008. Profiled soil moisture at depths of 5, 20, and 40 cm was continuously monitored using theta-probes, while soil temperature at depths of 2, 8, 20, 40, and 100 cm was monitored using Platinum ground temperature probes. Since 2016, newly automated monitoring instruments were also used for continuous monitoring of soil temperature and moisture at depths of 10, 30, 50, 70, and 100 cm at the UG79, UG99, and CG sites. ii) At the field scale, during the growth period from 2004 to 2008, a regular sampling grid (about 100 points) was established in all five sites using differential GPS and UTM systems. Soil water content, water drop penetration time, shear strength, and hydraulic conductivity were measured once per week/month. At the beginning, soil organic carbon concentration, bulk density, soil texture, and plant parameters were also taken at each grid point. iii) At the catchment scale, a field sampling scheme was designed, using land use and soil type as stratification variables. A total of 30 sampling points were selected. At each sampling point, detailed soil surveys were conducted to measure soil profile characteristics, including soil colour, texture, structure, and chemical elements. Additionally, some soil hydrological properties were recorded on site. This dataset offers critical insights into the factors influencing livestock carrying capacity in Mongolian grasslands. The integration of these data types can substantially enhance our understanding and management of these ecosystems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11466644 | PMC |
http://dx.doi.org/10.1016/j.dib.2024.110812 | DOI Listing |
Plant Cell Environ
January 2025
State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China.
In acidic soil conditions, aluminium (Al) limits crop growth and yields but benefits the growth of tea plants. Flavonols are suggested to form complexes with Al, enhancing Al accumulation in tea plants. The role of flavonols in promoting lateral root formation under Al stress remains unclear.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Beijing Life Science Academy, Beijing, 102200, China.
Background: Fungal communities around plant roots play crucial roles in maintaining plant health. Nonetheless, the responses of fungal communities to bacterial wilt disease remain poorly understood. Here, the structure and function of fungal communities across four consecutive compartments (bulk soil, rhizosphere, rhizoplane and root endosphere) were investigated under the influence of bacterial wilt disease.
View Article and Find Full Text PDFBiol Futur
January 2025
Physics Department, Faculty of Science, Istanbul University, Istanbul, Türkiye.
Tree bark is an important natural polymer for sound absorption. The main components in the bark of different tree species are polymers with high molecular weight such as cellulose, hemicellulose, and lignin. The aim of this study is to determine the noise reduction coefficient (NRC), lignin, alcohol-benzene solubility (ABS), carbon (C), and nitrogen (N) contents in samples taken from the bark of different tree species-black locust (Robinia pseudoacacia), narrow-leaved ash (Fraxinus angustifolia), stone pine (Pinus pinea), silver lime (Tilia tomentosa), sweet chestnut (Castanea sativa), sessile oak (Quercus petraea), and maritime pine (Pinus pinaster) and to investigate the relationship between these chemical properties and sound absorption measurements.
View Article and Find Full Text PDFSci Rep
January 2025
College of Water Resources and Civil Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, China.
The Inner Mongolia section of the Yellow River is a seasonal frozen soil area, where the freeze-thaw effect can alter soil strength and compressibility, affecting bank stability. This study takes the banks sandy silt of the Inner Mongolia section of the Yellow River as the research object. It systematically investigates the relationship between shear strength parameters and compression index of sandy silt and the initial dry density, water content, and freeze-thaw cycles of the soil.
View Article and Find Full Text PDFSci Rep
January 2025
Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection, Julius Kühn Institute (JKI)-Federal Research Centre for Cultivated Plants, Berlin, Germany.
Agroforestry systems are multifunctional land-use systems that promote soil life. Despite their large potential spatio-temporal complexity, the majority of studies that investigated soil organisms in temperate cropland agroforestry systems focused on rather non-complex systems. Here, we investigated the topsoil and subsoil microbiome of two complex and innovative alley cropping systems: an agrosilvopastoral system combining poplar trees, crops, and livestock and a syntropic agroforestry system combining 35 tree and shrub species with forage crops.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!