AI Article Synopsis

  • The study focuses on how motor learning can be generalized to improve skill acquisition under varying conditions, particularly looking at the effects of sleep on performance.
  • In the first experiment with healthy young participants, it was found that learning a new motor task led to both immediate skill improvement and additional gains over time, with sleep enhancing accuracy but not speed.
  • The second experiment compared young healthy individuals with drug-naïve Parkinson's patients, revealing that while both groups improved in accuracy post-sleep, the Parkinson's group showed difficulties in recalling motor sequences due to cognitive challenges linked to the disease.

Article Abstract

An essential aspect of motor learning is generalizing procedural knowledge to facilitate skill acquisition across diverse conditions. Here, we examined the development of generalized motor learning during initial practice-dependent learning, and how distinct components of learning are consolidated over longer timescales during wakefulness or sleep. In the first experiment, a group of young healthy volunteers engaged in a novel motor sequence task over 36 h in a two-arm experimental design (either morning-evening-morning, or evening-morning-evening) aimed at controlling for circadian confounders. The findings unveiled an immediate, rapid generalization of sequential learning, accompanied by an additional long-timescale performance gain. Sleep modulated accuracy, but not speed, above and beyond equivalent wake intervals. To further elucidate the role of sleep across ages and under neurodegenerative disorders, a second experiment utilized the same task in a group of early-stage, drug-naïve individuals with Parkinson's disease and in healthy individuals of comparable age. Participants with Parkinson's disease exhibited comparable performance to their healthy age-matched group with the exception of reduced performance in recalling motor sequences, revealing a disease-related cognitive shortfall. In line with the results found in young subjects, both groups exhibited improved accuracy, but not speed, following a night of sleep. This result emphasizes the role of sleep in skill acquisition and provides a potential framework for deeper investigation of the intricate relationship between sleep, aging, Parkinson's disease, and motor learning.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11464313PMC
http://dx.doi.org/10.3389/fnbeh.2024.1466696DOI Listing

Publication Analysis

Top Keywords

motor learning
16
parkinson's disease
16
accuracy speed
12
generalized motor
8
individuals parkinson's
8
skill acquisition
8
role sleep
8
sleep
7
learning
7
motor
6

Similar Publications

Diagonal loading common spatial patterns with Pearson correlation coefficient based feature selection for efficient motor imagery classification.

Comput Methods Biomech Biomed Engin

January 2025

Department of Electronics and Electrical Communications, Faculty of Electronic Engineering, Menoufia University, Menouf, Egypt.

The conversion of a person's intentions into device commands through the use of brain-computer interface (BCI) is a feasible communication method for individuals with nervous system disorders. While common spatial pattern (CSP) is commonly used for feature extraction in BCIs, it has limitations. It is known for its susceptibility to noise and tendency to overfit.

View Article and Find Full Text PDF

Introduction: Brain age gap (BAG), defined as the difference between MRI-predicted 'brain age' and chronological age, can capture information underlying various neurological disorders. We investigated the pathophysiological significance of the BAG across neurodegenerative disorders.

Methods: We developed a brain age estimator using structural MRIs of healthy-aged individuals from one cohort study.

View Article and Find Full Text PDF

Objective: The aim of the present study is to examine the relationship between EEG measures and functional recovery in right-hemisphere stroke patients.

Methods: Participants with stroke (PS) and neurologically unimpaired controls (UC) were enrolled. At enrolment, all participants were assessed for motor and cognitive functioning with specific scales (motricity index, trunk control test, Level of Cognitive Functioning, and Functional Independence Measure (FIM).

View Article and Find Full Text PDF

Objective: As brain-computer interface (BCI) research advances, many new applications are being developed. Tasks can be performed in different virtual environments, and whether a BCI user can switch environments seamlessly will influence the ultimate utility of a clinical device. Approach: Here we investigate the importance of the immersiveness of the virtual environment used to train BCI decoders on the resulting decoder and its generalizability between environments.

View Article and Find Full Text PDF

EEG correlates of acquiring race driving skills.

J Neural Eng

January 2025

School of Computer Science and Electronic Engineering, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.

Objective Race driving is a complex motor task that involves multiple concurrent cognitive processes in different brain regions coordinated to maintain and optimize speed and control. Delineating the neuroplasticity accompanying the acquisition of complex and fine motor skills such as racing is crucial to elucidate how these are gradually encoded in the brain and inform new training regimes. This study aims, first, to identify the neural correlates of learning to drive a racing car using non-invasive electroencephalography (EEG) imaging and longitudinal monitoring.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!