A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Polyoxometalate Reinforced Perovskite Phase for High-Performance Perovskite Photovoltaics. | LitMetric

AI Article Synopsis

  • Ionic hybrid perovskites struggle with structural stability, leading to phase degradation, so creating strong interlayers is essential for improving their durability in solar cells.
  • Incorporating redox-active polyoxometalates (POMs) helps to stabilize perovskite structures by passivating defects and continuously repairing them through electron transfer.
  • This method not only retains 97.2% of initial power conversion efficiency after 1500 hours at high temperatures but is also applicable to various perovskite types, showcasing its potential for enhancing solar cell performance.

Article Abstract

Ionic hybrid perovskites face challenges in maintaining their structural stability against non-equilibrium phase degradation, therefore, it is essential to develop effective ways to reinforce their corner-shared [PbI] octahedral units. To strengthen structural stability, redox-active functional polyoxometalates (POMs) are developed and incorporated into perovskite solar cells (PSCs) to form a robust polyoxometalates/perovskite interlayer for stabilizing the perovskite phase. This approach offers several advantages: 1) promotes the formation of an interfacial connecting layer to passivate interfacial defects in addition to stabilize the [PbI] units through exchanged ammonium cations in POMs with perovskites; 2) facilitates continuous structural repairing of Pb- and I-rich defects in the [PbI] unit through redox electron shuttling of the electroactive metal ions in POMs; 3) provides guidance for selecting suitable redox mediators based on the kinetic studies of POM's effectiveness in reacting with targeted defects. The POM-reinforced device maintains 97.2% of its initial PCE after 1500 h of shelf-life test at 65 °C, while also enhancing the long-term operational stability. Additionally, this approach can be generally applicable across scalable sizes and various bandgap perovskites in devices, showing the promise of using functional POMs to enhance perovskite photovoltaic performance.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202410564DOI Listing

Publication Analysis

Top Keywords

perovskite phase
8
structural stability
8
perovskite
5
polyoxometalate reinforced
4
reinforced perovskite
4
phase high-performance
4
high-performance perovskite
4
perovskite photovoltaics
4
photovoltaics ionic
4
ionic hybrid
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!