The corrosion of metals and alloys is a fundamental issue in modern society. Understanding the mechanisms that cause and prevent corrosion is integral to saving millions of dollars each year and to ensure the safe use of infrastructure subject to the hazardous degrading effects of corrosion. Despite this, corrosion detection techniques have lacked precise, quantitative information, with industries taking a top-down, macroscale approach to analyzing corrosion with tests that span months to years and yield qualitative information. Fluorescence, a well-established optical method, can fill the niche of early-stage, quantitative corrosion detection and can be employed for both bulk and localized testing over time. The latter, fluorescence microscopy, can be pushed to greater levels of detail with single-molecule microscopy, achieving nanometer spatial and subsecond temporal resolutions of corrosion that allow for the extraction of dynamic information and kinetics. This review will present how fluorescence microscopy can provide researchers with a molecular view into the chemical mechanisms of corrosion at interfaces and allow for faster, quantitative studies of how to detect and prevent corrosion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.4c07800 | DOI Listing |
Mini Rev Med Chem
January 2025
Dipartimento di Farmacia, Università di Pisa, Via Bonanno 33, 56126, Pisa, Italia.
Luminescent Lanthanide (III) (Ln(III)) bioprobes (LLBs) have been extensively used in the last two decades as intracellular molecular probes in bio-imaging for the efficient revelation of analytes, to signal intracellular events (enzymes/protein activity, antigen-antibody interaction), target specific organelles, and determine parameters of particular biophysical interest, to gain important insights on pathologies or diseases. The choice of using a luminescent Ln(III) coordination compound with respect to a common organic fluorophore is intimately connected to how their photophysical sensitization (antenna effect) can be finely tuned and especially triggered to respond (even quantitatively) to a certain biophysical event, condition or analyte. While there are other reviews focused on how to design chromophoric ligands for an efficient sensitization of Ln(III) ions, both in the visible and NIR region, this review is application-driven: it is a small collection of particularly interesting examples where the LLB's emissive information is acquired by imaging the emission intensity and/or the fluorescence lifetime (fluorescence lifetime imaging microscopy, FLIM).
View Article and Find Full Text PDFChem Biomed Imaging
January 2025
Precision Healthcare University Research Institute, Queen Mary University of London, Whitechapel, London E1 4NS, United Kingdom.
Bacterial resistance, primarily stemming from misdiagnosis, misuse, and overuse of antibacterial medications in humans and animals, is a pressing issue. To address this, we focused on developing a fluorescent probe for the detection of bacteria, with a unique feature-an exceptionally long fluorescence lifetime, to overcome autofluorescence limitations in biological samples. The polymyxin-based probe (ADOTA-PMX) selectively targets Gram-negative bacteria and used the red-emitting fluorophore azadioxatriangulenium (with a reported fluorescence lifetime of 19.
View Article and Find Full Text PDFNat Energy
October 2024
Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK.
Microscopy provides a proxy for assessing the operation of perovskite solar cells, yet most works in the literature have focused on bare perovskite thin films, missing charge transport and recombination losses present in full devices. Here we demonstrate a multimodal operando microscopy toolkit to measure and spatially correlate nanoscale charge transport losses, recombination losses and chemical composition. By applying this toolkit to the same scan areas of state-of-the-art, alloyed perovskite cells before and after extended operation, we show that devices with the highest macroscopic performance have the lowest initial performance spatial heterogeneity-a crucial link that is missed in conventional microscopy.
View Article and Find Full Text PDFExp Ther Med
March 2025
OrthoLab, The Rudbeck Laboratory, Department of Surgical Sciences/Orthopedics, Uppsala University, 75185 Uppsala, Sweden.
Silver (Ag) possesses potent antimicrobial properties and is used as a coating for medical devices. The impact of silver ions released from orthopedic implants on the differentiation and osteoid formation of different osteogenic cells has yet to be systematically studied. In the present study, human mesenchymal stem cells (hMSCs) and primary human osteoblasts (hOBs) were exposed to different static Ag concentrations (0, 0.
View Article and Find Full Text PDFMol Pharm
January 2025
School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China.
Early detection and precise treatment for breast cancer are crucial, given its high global incidence rate. Hence, the development of novel imaging targets is essential for diagnosing and monitoring resistance to chemotherapy, which is pivotal for achieving precise and personalized treatment for breast cancer patients. In our previous work, we successfully developed a near-infrared (NIR) probe for CYP1B1-targeted imaging.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!