Navigating a 1E+60 Chemical Space of Peptide/Peptoid Oligomers.

Mol Inform

Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland.

Published: January 2025

Herein we report a virtual library of 1E+60 members, a common estimate for the total size of the drug-like chemical space. The library is obtained from 100 commercially available peptide and peptoid building blocks assembled into linear or cyclic oligomers of up to 30 units, forming molecules within the size range of peptide drugs and potentially accessible by solid-phase synthesis. We demonstrate ligand-based virtual screening (LBVS) using the peptide design genetic algorithm (PDGA), which evolves a population of 50 members to resemble a given target molecule using molecular fingerprint similarity as fitness function. Target molecules are reached in less than 10,000 generations. Like in many journeys, the value of the chemical space journey using PDGA lies not in reaching the target but in the journey itself, here by encountering non-obvious analogs. We also show that PDGA can be used to generate median molecules and analogs of non-peptide target molecules.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11733718PMC
http://dx.doi.org/10.1002/minf.202400186DOI Listing

Publication Analysis

Top Keywords

chemical space
12
target molecules
8
navigating 1e+60
4
1e+60 chemical
4
space peptide/peptoid
4
peptide/peptoid oligomers
4
oligomers report
4
report virtual
4
virtual library
4
library 1e+60
4

Similar Publications

The (PSS) experiment was part of the European Space Agency's mission and was conducted on the International Space Station from 2014 to 2016. The PSS experiment investigated the properties of montmorillonite clay as a protective shield against degradation of organic compounds that were exposed to elevated levels of ultraviolet (UV) radiation in space. Additionally, we examined the potential for montmorillonite to catalyze UV-induced breakdown of the amino acid alanine and its potential to trap the resulting photochemical byproducts within its interlayers.

View Article and Find Full Text PDF

Introduction: In children, polymethylmethacrylate (PMMA) is a commonly used material for fabrication of dental prostheses, such as obturators, removable space maintainers, habit-breaking appliances, removable orthodontic appliances, and removable partial and complete dentures. Regular cleaning of such prostheses is vital for maintaining the health of the oral tissues as well as the longevity of the prosthesis. The chemical method of disinfection, using different chemical cleansers, is commonly used for cleaning a dental prosthesis.

View Article and Find Full Text PDF

The structural stability of the energetic material 2,2',4,4',6,6'-hexanitrostilbene (-HNS) under high pressure is critical for optimizing its detonation performance and low sensitivity. However, its structural response to external pressure has not been sufficiently investigated. In this study, high-pressure single-crystal X-ray diffraction data of -HNS demonstrate that the sample exhibits pronounced anisotropic strain, demonstrating an unusual negative linear compressibility (NLC) along the axis, with a coefficient of -4.

View Article and Find Full Text PDF

Recent advancements in wearable photonic sensors have marked a transformative era in healthcare, enabling non-invasive, real-time, portable, and personalized medical monitoring. These sensors leverage the unique properties of light toward high-performance sensing in form factors optimized for real-world use. Their ability to offer solutions to a broad spectrum of medical challenges - from routine health monitoring to managing chronic conditions, inspires a rapidly growing translational market.

View Article and Find Full Text PDF

Stretchable Blue Phase Liquid Crystal Lasers with Optical Stability Based on Small-Strain Nonlinear 3D Asymmetric Deformation.

Adv Mater

January 2025

CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.

Blue phase liquid crystal (BPLC) lasers exhibit exceptional optical quality and tunability to external stimuli, holding significant promise for innovative developments in the field of flexible optoelectronics. However, there remain challenges for BPLC elastomer (BPLCE) lasers in maintaining good optical stability during stretching and varying temperature conditions. In this work, a stretchable laser is developed based on a well-designed BPLCE with a combination of partially and fully crosslinked networks, which can output a single-peak laser under small deformation (44.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!