DNA-encoded library (DEL) technology is a crucial tool in pharmaceutical research, rapidly identifying compounds that bind to a target of interest from an extensive pool of compounds. In this study, we propose a new method for generating single-stranded DELs (ssDELs) with compounds at the 3' end. The introduction of uniquely designed hairpin-shaped headpieces containing deoxyuridine (NC-HP) and the use of a cleavage enzyme facilitate the conversion from double-stranded DELs (dsDELs) to such ssDELs. Moreover, Klenow fill-in provides the dsDELs with photo-crosslinkers covalently linked to the coding region, which exhibit durability even under stringent washing conditions and enable photo-crosslinking with a high signal-to-noise ratio, as also confirmed in cell-based photo-crosslinking selections.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.202403233 | DOI Listing |
Chemistry
December 2024
Chemical Research Laboratories, Nissan Chemical Corporation, 10-1 Tsuboi-Nishi 2-chome, Funabashi, Chiba, Japan.
DNA-encoded library (DEL) technology is a crucial tool in pharmaceutical research, rapidly identifying compounds that bind to a target of interest from an extensive pool of compounds. In this study, we propose a new method for generating single-stranded DELs (ssDELs) with compounds at the 3' end. The introduction of uniquely designed hairpin-shaped headpieces containing deoxyuridine (NC-HP) and the use of a cleavage enzyme facilitate the conversion from double-stranded DELs (dsDELs) to such ssDELs.
View Article and Find Full Text PDFBioconjug Chem
July 2024
R&D Department, Philochem AG, Libernstrasse 3, Otelfingen, ZH CH-8112, Switzerland.
DNA-Encoded Libraries (DELs) allow the parallel screening of millions of compounds for various applications, including discovery or affinity maturation campaigns. However, library construction and HIT resynthesis can be cumbersome, especially when library members present an unknown stereochemistry. We introduce a permutational encoding strategy suitable for the construction of highly pure single-stranded single-pharmacophore DELs, designed to distinguish isomers at the sequencing level (e.
View Article and Find Full Text PDFBiosens Bioelectron
June 2024
Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China; College of Bioengineering, Chongqing University, Chongqing, 400044, PR China. Electronic address:
The detection of circulating tumor DNA (ctDNA), as a practical liquid biopsy technique, was of great significance for the study of cancer diagnosis and prognosis. However, reported methods for detection ctDNA still have some limitations, such as tedious process and high cost. In this study, CsPbBr nanosheet (CsPbBr NS) with high water stability was prepared by etching, and its fluorescence intensity could be stably stored for 1 year.
View Article and Find Full Text PDFBioorg Med Chem
February 2024
Discovery Chemistry Research & Technologies, Lilly Research Laboratories, Eli Lilly and Company, Alcobendas, Madrid 28108, Spain.
Codification of DNA Encoded Libraries (DELs) is critical for successful ligand identification of molecules that bind a protein of interest (POI). There are different encoding strategies that permit, for instance, the customization of a DEL for testing single or dual pharmacophores (single strand DNA) or for producing and screening large diversity libraries of small molecules (double strand DNA). Both approaches challenges, either from the synthetic and encoding point of view, or from the selection methodology to be utilized for the screening.
View Article and Find Full Text PDFACS Omega
April 2022
Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China.
DNA-encoded library (DEL) is an efficient high-throughput screening technology platform in drug discovery and is also gaining momentum in academic research. Today, the majority of DELs are assembled and encoded with double-stranded DNA tags (dsDELs) and has been selected against numerous biological targets; however, dsDELs are not amendable to some of the recently developed selection methods, such as the cross-linking-based selection against immobilized targets and live-cell-based selections, which require DELs encoded with single-stranded DNAs (ssDELs). Herein, we present a simple method to convert dsDELs to ssDELs using exonuclease digestion without library redesign and resynthesis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!