Severity: Warning
Message: fopen(/var/lib/php/sessions/ci_sessionq1tp38vmrovh0ucf5n9c9rm97l13cmur): Failed to open stream: No space left on device
Filename: drivers/Session_files_driver.php
Line Number: 177
Backtrace:
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)
Filename: Session/Session.php
Line Number: 137
Backtrace:
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Ovarian cancer is a formidable health challenge that demands accurate and timely survival predictions to guide clinical interventions. Existing methods, while commendable, suffer from limitations in harnessing the temporal evolution of patient data and capturing intricate interdependencies among different data elements. In this paper, we present a novel methodology which combines Temporal Analysis and Graph Neural Networks (GNNs) to significantly enhance ovarian cancer survival rate predictions. The shortcomings of current processes originate from their disability to correctly seize the complex interactions amongst diverse scientific information units in addition to the dynamic modifications that arise in a affected person`s nation over time. By combining temporal information evaluation and GNNs, our cautioned approach overcomes those drawbacks and, whilst as compared to preceding methods, yields a noteworthy 8.3% benefit in precision, 4.9% more accuracy, 5.5% more advantageous recall, and a considerable 2.9% reduction in prediction latency. Our method's Temporal Analysis factor uses longitudinal affected person information to perceive good-sized styles and tendencies that offer precious insights into the direction of ovarian cancer. Through the combination of GNNs, we offer a robust framework able to shoot complicated interactions among exclusive capabilities of scientific data, permitting the version to realize diffused dependencies that would affect survival results. Our paintings have tremendous implications for scientific practice. Prompt and correct estimation of the survival price of ovarian most cancers allows scientific experts to customize remedy regimens, manipulate assets efficiently, and provide individualized care to patients. Additionally, the interpretability of our version`s predictions promotes a collaborative method for affected person care via way of means of strengthening agreement among scientific employees and the AI-driven selection help system. The proposed approach not only outperforms existing methods but also has the possible to develop ovarian cancer treatment by providing clinicians through a reliable tool for informed decision-making. Through a fusion of Temporal Analysis and Graph Neural Networks, we conduit the gap among data-driven insights and clinical practice, proposing a capable opportunity for refining patient outcomes in ovarian cancer management operations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11468212 | PMC |
http://dx.doi.org/10.1186/s12911-024-02665-2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!