Discovery of a potent, Kv7.3-selective potassium channel opener from a Polynesian traditional botanical anticonvulsant.

Commun Chem

Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA.

Published: October 2024

Plants remain an important source of biologically active small molecules with high therapeutic potential. The voltage-gated potassium (Kv) channel formed by Kv7.2/3 (KCNQ2/3) heteromers is a major target for anticonvulsant drug development. Here, we screened 1444 extracts primarily from plants collected in California and the US Virgin Islands, for their ability to activate Kv7.2/3 but not inhibit Kv1.3, to select against tannic acid being the active component. We validated the 7 strongest hits, identified Thespesia populnea (miro, milo, portia tree) as the most promising, then discovered its primary active metabolite to be gentisic acid (GA). GA highly potently activated Kv7.2/3 (EC, 2.8 nM). GA is, uniquely to our knowledge, 100% selective for Kv7.3 versus other Kv7 homomers; it requires S5 residue Kv7.3-W265 for Kv7.2/3 activation, and it ameliorates pentylenetetrazole-induced seizures in mice. Structure-activity studies revealed that the FDA-approved vasoprotective drug calcium dobesilate, a GA analog, is a previously unrecognized Kv7.2/3 channel opener. Also an active aspirin metabolite, GA provides a molecular rationale for the use of T. populnea as an anticonvulsant in Polynesian indigenous medicine and presents novel pharmacological prospects for potent, isoform-selective, therapeutic Kv7 channel activation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11467302PMC
http://dx.doi.org/10.1038/s42004-024-01318-9DOI Listing

Publication Analysis

Top Keywords

potassium channel
8
channel opener
8
kv72/3
5
discovery potent
4
potent kv73-selective
4
kv73-selective potassium
4
channel
4
opener polynesian
4
polynesian traditional
4
traditional botanical
4

Similar Publications

Hibernation, an adaptive mechanism to extreme environmental conditions, is prevalent among mammals. Its main characteristics include reduced body temperature and metabolic rate. However, the mechanisms by which hibernating animals re-enter deep sleep during the euthermic phase to sustain hibernation remain poorly understood.

View Article and Find Full Text PDF

Background: Long QT Syndrome Type-2 (LQT2) is due to loss-of-function variants. encodes K 11.1 that forms a delayed-rectifier potassium channel in the brain and heart.

View Article and Find Full Text PDF
Article Synopsis
  • Variants associated with neurodevelopmental impairments in children are complex and challenging to evaluate due to their diverse nature and unclear causes.
  • The study highlights a case of a child with neonatal-onset epilepsy and a specific genetic variant (G256W) that impacts ion channel function and leads to reduced cell stability and conduction in nervous tissue.
  • The research also establishes a mouse model that exhibits epilepsy and hyperexcitability in brain cells, linking the genetic variant to observable neurological behaviors and suggesting potential wider implications for understanding similar conditions in other patients.
View Article and Find Full Text PDF
Article Synopsis
  • HCN ion channels play a key role in cellular activity and pain perception, with propofol acting as an analgesic by inhibiting their function.
  • Researchers used a propofol analog to pinpoint binding sites on the human HCN1 isoform, revealing a specific pocket formed by certain residues in the channel.
  • Mutations in this binding pocket affect propofol's ability to modulate HCN1 currents, highlighting its specific binding mechanism and offering insights for developing targeted HCN channel modulators.
View Article and Find Full Text PDF

A subset of amyotrophic lateral sclerosis (ALS) patients tests positive for antibodies commonly associated with autoimmune neurological diseases, including voltage-gated potassium channel (VGKC)-complex antibodies. Although an autoimmune basis for ALS remains speculative, and immunomodulatory therapies have shown minimal benefit as of yet, isolated cases suggest that VGKC-complex antibodies may be relevant to disease type and progression. In this report, we present a case of ALS in which increasing VGKC-complex antibody levels correlated with clinical decline, raising the question of whether such antibodies could serve as biomarkers of progression in VGKC-complex antibody-positive ALS patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!