This study explored the significance of long non-coding RNAs (lncRNAs), particularly their role in maintaining dystrophin protein stability and regulating myocyte proliferation and differentiation. The investigation focused on DMD/mdx mouse skeletal muscle primary myoblasts, aiming to identify lncRNAs potential as biomarkers and therapeutic targets for Duchenne muscular dystrophy (DMD). Utilizing CLC Genomics Workbench software, 554 differentially expressed lncRNAs were identified in DMD/mdx mice compared to wild-type (WT) control. Among them, 373 were upregulated, and 181 were downregulated. The study highlighted specific lncRNAs (e.g., 5930430L01Rik, Gm10143, LncRNA1490, LncRNA580) and their potential regulatory roles in DMD key genes like IGF1, FN1, TNNI1, and MYOD1. By predicting miRNA and their connections with lncRNA and mRNA (ceRNA network) using tools such as miRNet, miRSYSTEM and miRCARTA, the study revealed potential indirect regulation of Dystrophin, IGF1R and UTRN genes by identified lncRNAs (e.g. 2310001H17Rik-203, C130073E24Rik-202, LncRNA2767, 5930430L01Rik and LncRNA580). These findings suggest that the identified lncRNAs may play crucial roles in the development and progression of DMD through their regulatory influence on key gene expression, providing valuable insights for potential therapeutic interventions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11467414 | PMC |
http://dx.doi.org/10.1038/s41598-024-75221-7 | DOI Listing |
J Inflamm Res
January 2025
Department of Rheumatism and Immunity, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China.
Background: Ankylosing spondylitis (AS) is a chronic autoimmune disease characterized by inflammation of the sacroiliac joints and spine. Cuproptosis is a newly recognized copper-induced cell death mechanism. Our study explored the novel role of cuproptosis-related genes (CRGs) in AS, focusing on immune cell infiltration and molecular clustering.
View Article and Find Full Text PDFJ Inflamm Res
January 2025
Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China.
Purpose: Necrotizing fasciitis (NF) is a scarce but potentially life-threatening infection. However, no research has reported the cellular heterogeneity in patients with NF. We aim to investigate the change of cells from deep fascia in response to NF by single-cell RNA-seq.
View Article and Find Full Text PDFJ Inflamm Res
January 2025
Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China.
Background: Chronic kidney disease (CKD) is a progressive condition that arises from diverse etiological factors, resulting in structural alterations and functional impairment of the kidneys. We aimed to establish the Anoikis-related gene signature in CKD by bioinformatics analysis.
Methods: We retrieved 3 datasets from the Gene Expression Omnibus (GEO) database to obtain differentially expressed genes (DEGs), followed by Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, Gene Set Enrichment Analysis (GSEA) and Gene Set Variation Analysis (GSVA) of them, which were intersected with Anoikis-related genes (ARGs) to derive Anoikis-related differentially expressed genes (ARDEGs).
J Bioinform Syst Biol
January 2024
Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, United States.
Purpose: Nitric oxide (NO) is recognized as an important biological mediator that controls several physiological functions, and evidence is now emerging that this molecule may play a significant role in the postnatal control of ocular growth and myopia development. We therefore sought to understand the role that nitric oxide plays in visually-guided ocular growth in order to gain insight into the underlying mechanisms of this process.
Methods: Choroids were incubated in organ culture in the presence of the NO donor, PAPA- NONOate (1.
Front Immunol
January 2025
Xin'an Medicine Research Center, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, China.
Background: is a differentially expressed gene (DEG) between M1 and M2 macrophages. This study explained why it causes opposite effects in different circumstances.
Methods: Gene expression profiles of various cell subsets were compared by mining a public database.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!