A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Identification of dynamic networks community by fusing deep learning and evolutionary clustering. | LitMetric

Community detection is a critical component of network analysis and a hot topic in social computing. Detecting community structure in dynamic networks has important theoretical and practical implications for understanding the intrinsic function of networks and predicting network behavior. However, the majority of existing dynamic community detection methods adopt shallow models, which have limited ability to excavate complex non-linear structures and tend to generate undesirable community structures. In order to obtain an accurate and robust community structure in dynamic networks, we are inspired by network representation learning and utilize the deep learning to detect evolving communities in dynamic networks. In this paper, we propose a novel dynamic community detection method by fusing Deep Learning and Evolutionary Clustering (DLEC). This work attempts to combine deep learning and evolutionary clustering into a unified framework. First, we propose a matrix construction strategy to fully reveal the inherent community structures via the underlying community memberships. Then, we develop a novel multi-layer deep autoencoder framework that consists of multiple non-linear functions to extract the latent deep representation of the dynamic network. Based on the evolutionary clustering framework, a graph regularization term is introduced to ensure the smoothness of the community evolution. Finally, we employ the K-means clustering algorithm on the low-dimensional network space to obtain the community structure. Extensive experimental results on synthetic and real-world networks show that the proposed DLEC algorithm can effectively detect high-quality communities in dynamic networks.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11466966PMC
http://dx.doi.org/10.1038/s41598-024-74361-0DOI Listing

Publication Analysis

Top Keywords

dynamic networks
20
deep learning
16
evolutionary clustering
16
learning evolutionary
12
community detection
12
community structure
12
community
11
fusing deep
8
structure dynamic
8
dynamic community
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!