Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11563870PMC
http://dx.doi.org/10.1002/pd.6683DOI Listing

Publication Analysis

Top Keywords

novel missense
4
missense variant
4
variant smarcd1
4
smarcd1 gene
4
gene coffin-siris
4
coffin-siris syndrome
4
syndrome fetus
4
fetus ambiguous
4
ambiguous genitalia
4
genitalia multiple
4

Similar Publications

Genetic Variant Analyses Identify Novel Candidate Autism Risk Genes from a Highly Consanguineous Cohort of 104 Families from Oman.

Int J Mol Sci

December 2024

Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha P.O. Box 5825, Qatar.

Deficits in social communication, restricted interests, and repetitive behaviours are hallmarks of autism spectrum disorder (ASD). Despite high genetic heritability, the majority of clinically diagnosed ASD cases have unknown genetic origins. We performed genome sequencing on mothers, fathers, and affected individuals from 104 families with ASD in Oman, a Middle Eastern country underrepresented in international genetic studies.

View Article and Find Full Text PDF

Unveiling Secondary Mutations in Blended Phenotypes: Dual ERCC4 and OTOA Pathogenic Variants Through WES Analysis.

Int J Mol Sci

December 2024

Department of Biomedical and Biotechnological Sciences, Section of Clinical Biochemistry and Medical Genetics, University of Catania, via Santa Sofia, 95123 Catania, Italy.

This study describes two siblings from consanguineous parents who exhibit intellectual disability, microcephaly, photosensitivity, bilateral sensorineural hearing loss, numerous freckles, and other clinical features that suggest a potential disruption of the nucleotide excision repair (NER) pathway. Whole exome sequencing (WES) identified a novel homozygous missense variant in the gene, which was predicted to be pathogenic. However, a subsequent peculiar audiometric finding prompted further investigation, revealing a homozygous deletion in the gene linked to neurosensorial hearing loss.

View Article and Find Full Text PDF

Genetic Heterogeneity in Four Probands Reveals , , and Related Neurodevelopmental Disorders.

Biomedicines

November 2024

Translational Genomics Laboratory, Department of Biosciences, COMSATS University, Islamabad 45550, Pakistan.

: Neurodevelopmental disorders of genetic etiology are a highly diverse set of congenital recurrent complications triggered by irregularities in the basic tenets of brain development. : We present whole exome sequencing analysis and expression characteristics of the probands from four unrelated Pakistani consanguineous families with facial dysmorphism, neurodevelopmental, ophthalmic, auditory, verbal, psychiatric, behavioral, dental, and skeletal manifestations otherwise unexplained by clinical spectrum. : Whole exome sequencing identifies a novel, bi-allelic, missense variant in the gene [NM_152419.

View Article and Find Full Text PDF

: The gene encodes for the catalytic α subunit of Cytoplasmic phenylalanine-tRNA synthetase (FARS1), an essential enzyme for protein biosynthesis in transferring its amino acid component to tRNAs. Biallelic pathogenic variants have been associated with a multisystemic condition, characterized by variable expressivity and incomplete penetrance. Here, we report the case of an 11 year-old girl presenting interstitial lung disease, supratentorial leukoencephalopathy with brain cysts, hepatic dysfunction, hypoalbuminemia, skin and joint hyperlaxity, growth retardation, and dysmorphic features.

View Article and Find Full Text PDF

Stargardt disease (STGD1) is an autosomal recessive disorder caused by pathogenic variants in that affects the retina and is characterised by progressive central vision loss. The onset of disease manifestations varies from childhood to early adulthood. Whole exome (WES), whole gene, and whole genome sequencing (WGS) were performed for a patient with STGD1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!