A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Regulation of the Buried Interface to Achieve Efficient HTL-Free All-Inorganic CsPbIBr-Based Perovskite Solar Cells. | LitMetric

Regulation of the Buried Interface to Achieve Efficient HTL-Free All-Inorganic CsPbIBr-Based Perovskite Solar Cells.

ACS Appl Mater Interfaces

Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China.

Published: October 2024

The large voltage loss () mainly stems from the mismatch between the perovskite film and electron transport layer in CsPbIBr-based all-inorganic perovskite solar cells (I-PSCs), which restricts the power conversion efficiency (PCE) of devices. To address this issue, potassium benzoate (BAP) is first introduced as a bifunctional passivation material to regulate the TiO/CsPbIBr interface, reduce the , and improve the photovoltaic performance of CsPbIBr-based I-PSCs. Eventually, the champion PCE of CsPbIBr-based I-PSCs without a hole transport layer modified by BAP (Target-PSCs) improves to 14.90% from the 12.14% of reference PSCs. The open-circuit voltage () increases to 1.27 V from the initial 1.14 V after BAP modification. A series of characterizations show that BAP modification can not only optimize the energy level alignment of I-PSCs but also passivize the surface defects caused by uncoordinated Cs/Pb. Moreover, the Target-PSCs without encapsulation demonstrate better thermal stability, which can maintain 107.6% of the original PCE after annealing at 160 °C for 140 min in humid air. While the reference PSCs only maintain 76.5% of their initial PCE after annealing at the same process. This work provides a simple strategy to modify the buried interface and improve the performance of CsPbIBr-based I-PSCs.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.4c13156DOI Listing

Publication Analysis

Top Keywords

cspbibr-based i-pscs
12
buried interface
8
perovskite solar
8
solar cells
8
transport layer
8
performance cspbibr-based
8
reference pscs
8
bap modification
8
pce annealing
8
cspbibr-based
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!