Recent progress of flexible rechargeable batteries.

Sci Bull (Beijing)

Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of Fiber Electronic Materials and Devices, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fudan University, Shanghai 200433, China. Electronic address:

Published: December 2024

AI Article Synopsis

  • The rise of wearable electronics and soft robotics has led to increased research into flexible batteries, which are adaptable for various shapes and sizes in devices like smart systems and sensors.
  • Unlike traditional lithium-ion batteries, flexible batteries consist of materials that can bend and stretch, requiring innovative designs for their components like electrodes and current collectors.
  • The review categorizes flexible batteries into different structures and types, discusses their configurations, and addresses both advancements and ongoing challenges, providing insights for future applications.

Article Abstract

The rapid popularization of wearable electronics, soft robots and implanted medical devices has stimulated extensive research in flexible batteries, which are bendable, foldable, knittable, wearable, and/or stretchable. Benefiting from these distinct characteristics, flexible batteries can be seamlessly integrated into various wearable/implantable devices, such as smart home systems, flexible displays, and implantable sensors. In contrast to conventional lithium-ion batteries necessitating the incorporation of stringent current collectors and packaging layers that are typically rigid, flexible batteries require the flexibility of each component to accommodate diverse shapes or sizes. Accordingly, significant advancements have been achieved in the development of flexible electrodes, current collectors, electrolytes, and flexible structures to uphold superior electrochemical performance and exceptional flexibility. In this review, typical structures of flexible batteries are firstly introduced and classified into mono-dimensional, two-dimensional, and three-dimensional structures according to their configurations. Subsequently, five distinct types of flexible batteries, including flexible lithium-ion batteries, flexible sodium-ion batteries, flexible zinc-ion batteries, flexible lithium/sodium-air batteries, and flexible zinc/magnesium-air batteries, are discussed in detail according to their configurations, respectively. Meanwhile, related comprehensive analysis is introduced to delve into the fundamental design principles pertaining to electrodes, electrolytes, current collectors, and integrated structures for various flexible batteries. Finally, the developments and challenges of flexible batteries are summarized, offering viable guidelines to promote the practical applications in the future.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scib.2024.09.032DOI Listing

Publication Analysis

Top Keywords

flexible batteries
28
batteries flexible
16
flexible
15
batteries
14
current collectors
12
lithium-ion batteries
8
structures flexible
8
progress flexible
4
flexible rechargeable
4
rechargeable batteries
4

Similar Publications

Background: Cognitive flexibility (CF) is defined as the ability to switch efficiently between different concepts or tasks. Empirical evidence of CF in individuals with bulimia nervosa (BN), offers conflicting conclusions, attributed to how CF is conceptualized and operationalized. The aims of the current study were to compare CF performance of women with BN to healthy controls, utilising a CF model that includes three subtypes termed: task switching, switching sets and stimulus-response mapping.

View Article and Find Full Text PDF

Constructing new-generation ion exchange membranes under confinement regime.

Natl Sci Rev

February 2025

Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China.

Ion exchange membranes (IEMs) enable fast and selective ion transport and the partition of electrode reactions, playing an important role in the fields of precise ion separation, renewable energy storage and conversion, and clean energy production. Traditional IEMs form ion channels at the nanometer-scale via the assembly of flexible polymeric chains, which are trapped in the permeability/conductivity and selectivity trade-off dilemma due to a high swelling propensity. New-generation IEMs have shown great potential to break this intrinsic limitation by using microporous framework channels for ion transport under a confinement regime.

View Article and Find Full Text PDF

A bio-inspired microwave wireless system for constituting passive and maintenance-free IoT networks.

Natl Sci Rev

February 2025

State Key Laboratory of Millimeter Waves, School of Information Science and Engineering, Southeast University, Nanjing 210096, China.

With the rapid expansion of wireless networks, the deployment and long-term maintenance of distributed microwave terminals have become increasingly challenging. To address these issues, we present a bio-inspired microwave system to constitute passive and maintenance-free wireless networks. Drawing inspiration from vertebrate skeletons and skins, we employ stimuli-responsive polymer with tunable stiffness to support and protect sensitive electromagnetic structures, and synthesize self-healable skin-like polymer for system encapsulation.

View Article and Find Full Text PDF

A Robust Dual-Layered Solid Electrolyte Interphase Enabled by Cation Specific Adsorption-Induced Built-In Electrostatic Field for Long-Cycling Solid-State Lithium Metal Batteries.

Angew Chem Int Ed Engl

January 2025

Beijing Institute of Technology, Advanced Research Institute of Multidisciplinary Science, 5 Zhongguancun South Street,, Beijing Institute of Technology, 100081, Beijing, CHINA.

Solid-state lithium (Li) metal batteries (SSLMBs) are considered as one of the most promising next-generation battery technologies due to their high energy density and intrinsic safety. However, interfacial issues such as side reactions and Li dendrite growth severely hinder the practical application of SSLMBs. In this contribution, we proposed a cationic built-in electrostatic field to drive the generation of an anion-derived dual-layered solid electrolyte interphase (SEI).

View Article and Find Full Text PDF

Organic materials are promising as battery electrodes due to their flexible design, low cost, and sustainability. Although high electrolyte concentrations are known to suppress organic cathode dissolution, the organic cathode solubility depends on the interplay between the electrode and electrolyte polarities, which remains unexplored. Here, we elucidate the delicate interplay of electrode and electrolyte polarities to achieve stable cycling of organic cathode.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!