Respiratory rate (mean number of breaths per minute) and respiratory interval (mean time between breaths) can offer insight into a diving mammal's activity state, metabolic rate, behavior, and synchronization due to social cohesion. Also, respiratory rate can reflect an individual animal's health and has the potential to be an informative remotely assessed health metric for monitoring individual animal health in endangered whale species and populations such as southern resident killer whales (Orcinus orca). Using data collected from noninvasive, land-based theodolite tracking, we analyzed swimming speed and surfacing intervals (i.e., mean dive time or mean time between breaths) from 20,613 surfacings of 98 individuals from two populations of the fish-eating, resident killer whale ecotype, namely, one growing (northern resident) and one declining and endangered (southern resident) population. Focal animal sampling was used to measure behavior of individuals of known age and sex in various activity states. Our objective was to evaluate variability and generate normal ranges for respiratory intervals and swimming speeds for killer whales of the Northeast Pacific Ocean resident, fish-eating ecotype to identify baseline respiratory intervals. We found that median respiratory intervals for fish-eating killer whales were between 26 and 29 s for all activity states and that swimming speeds varied by activity state. Median swimming speeds were similar for foraging and traveling (1.6 and 1.7 m/s, respectively), but were significantly slower during resting (1.1 m/s) and social activity (1.3 m/s) states. Three southern resident killer whales in poor body condition (had body condition scores in the lowest 20th percentile of the population) swam at reduced speeds and had shorter median respiratory intervals than outwardly healthy whales of similar age and sex. Respiratory rates, respiratory intervals, and swimming speeds are valuable remotely sensed metrics of health for free-swimming killer whales, especially when combined with other metrics as is the standard in veterinary examinations.

Download full-text PDF

Source
http://dx.doi.org/10.7589/JWD-D-23-00186DOI Listing

Publication Analysis

Top Keywords

respiratory intervals
24
killer whales
24
swimming speeds
16
intervals swimming
12
southern resident
12
resident killer
12
respiratory
10
swimming speed
8
remotely sensed
8
whales orcinus
8

Similar Publications

Indoor incense burning and impaired lung function in patients with diabetes.

Sci Rep

January 2025

Department of Epidemiology, School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, China.

While recent studies have indicated a potential link between incense burning and respiratory diseases, there is a lack of data specifically focused on diabetic patients. To explore the relationship between indoor incense burning and impaired lung function among Chinese individuals with diabetes, a comprehensive cross-sectional study was undertaken, enrolling 431 adults diagnosed with diabetes. Information on incense burning and characteristics was collected using a structured questionnaire.

View Article and Find Full Text PDF

Introduction: Stage IV non-small cell lung carcinoma (NSCLC) with oligometastases is potentially curable by radical treatment. This study aimed to evaluate the efficacy and safety of chemoradiotherapy (CRT) for thoracic disease, including the primary lesion and lymph node metastases, combined with local consolidative therapy (LCT) for oligometastases.

Methods: This was a multicenter Phase II trial for patients with Stage IV NSCLC with oligometastases for whom CRT for thoracic disease was feasible.

View Article and Find Full Text PDF

Blood-based diagnosis of pediatric tuberculosis: a prospective cohort study in South Africa and Dominican Republic.

J Infect

January 2025

Center for Cellular and Molecular Diagnostics, Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, USA. Electronic address:

Objectives: Pediatric tuberculosis (TB) diagnosis is complicated by challenges in obtaining invasive respiratory specimens that frequently contain few Mycobacterium tuberculosis (Mtb) bacilli. We report the diagnostic performance of an Mtb antigen-derived peptide (MAP-TB) assay and its ability to monitor TB treatment response.

Methods: Study cohorts enrolled children who presented with presumptive TB at two hospitals in South Africa from 2012 to 2017 (157 children aged <13 years) and at community-based clinics in the Dominican Republic from 2019 to 2023 (101 children aged <18 years).

View Article and Find Full Text PDF

The connection between the respiratory capacity of skeletal muscle mitochondria and athletic performance is widely acknowledged in contemporary research. Building on a solid foundation of prior studies, current research has fostered an environment where scientists can effectively demonstrate how a tailored regimen of exercise intensity, duration, and frequency significantly boosts mitochondrial function within skeletal muscles. The range of exercise modalities is broad, spanning from endurance and high-intensity interval training to resistance-based exercises, allowing for an in-depth exploration of effective strategies to enhance mitochondrial respiratory capacity-a key factor in improving exercise performance, in other words offering a better skeletal muscle capacity to cope with exercise demands.

View Article and Find Full Text PDF

Introduction: Osimertinib is the first-line treatment for patients with non-small cell lung cancer (NSCLC) who have EGFR mutations and favorable performance status (PS). Despite increasing clinical data on osimertinib, evidence in patients with an impaired PS remains limited. Therefore, a multicenter phase II trial (OPEN/TORG2040) was conducted to evaluate the efficacy and safety of first-line osimertinib for patients with EGFR mutation-positive NSCLC and poor PS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!