Adsorptive removal of phosphate plays a crucial role in mitigating eutrophication. Herein, the Zr/Fe embedded chitosan/alginate hydrogel bead (Zr/Fe/CS/Alg) is reported as an effective phosphate adsorbent. This polymer nanocomposite is synthesized by the in-situ reduction of the metals on the polymer matrix. The synthesized adsorbent was characterized by the FTIR, SEM-EDX, TGA, BET, and XPS. The adsorbent showed a maximum phosphate adsorption capacity of 221.72 mg/g at pH 3. The experimental data fit well with the Freundlich isotherm and pseudo-second-order kinetics model, indicating a heterogeneous multilayer surface formation and a chemisorption-dominated adsorption process. Density Functional Theory (DFT) and Monte Carlo (MC) calculations revealed high negative adsorption energy due to the chemisorption of phosphate on the adsorbent. Hence, the major interactions such as electrostatic attraction, hydrogen bonding, and inner-sphere complexation of phosphate adsorption and Zr/Fe/CS/Alg hydrogel beads were investigated from the experimental and computational analysis. The negative values of thermodynamic parameters indicated a spontaneous, exothermic, and less random adsorption process. The synthesized adsorbent exhibited excellent selectivity toward phosphate and maintained 73 % efficiency after six adsorption/desorption cycles. The Zr/Fe/CS/Alg hydrogel beads reduced the phosphate concentration in real wastewater samples from 19.02 mg/L to 0.985 mg/L, suggesting that these nanocomposite hydrogel beads could be a promising adsorbent for real-world applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2024.136431DOI Listing

Publication Analysis

Top Keywords

hydrogel beads
16
removal phosphate
8
embedded chitosan/alginate
8
chitosan/alginate hydrogel
8
experimental computational
8
phosphate adsorbent
8
synthesized adsorbent
8
phosphate adsorption
8
adsorption process
8
zr/fe/cs/alg hydrogel
8

Similar Publications

Composite gels are a type of soft matter, which contains a continuous three-dimensional crosslinked network and has been embedded with non-gel materials. Compared to pure gels, composite gels show high flexibility and tunability in properties and hence have attracted extensive interest in applications ranging from cancer therapy to tissue engineering. In this study, we incorporated triethylenetetramine (TETA)-functionalized cobalt ferrite nanoparticles (ANPs) into a hydrogel consisting of sodium alginate (SA) and methyl cellulose (MC), and examined the resulting composite gels for controlled drug release.

View Article and Find Full Text PDF

pH-sensitive chitosan/sodium alginate/calcium chloride hydrogel beads for potential oral delivery of rice bran bioactive peptides.

Food Chem

December 2024

Molecular Nutrition Branch, National Engineering Research Center of Rice and By-product Deep Processing/College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China. Electronic address:

Although rice bran active peptide (RBAP) has potent antioxidant properties, its practical applications have been limited by its low bioavailability. In this study, we hypothesized that pH-responsive hydrogels prepared from the ionic gelation between chitosan and alginate could be a promising delivery system of short-chain peptides, like RBAP, for protecting them from chemical degradation during digestion and improving their functionality. The hydrogel beads retained RBAP in the gastric environment due to strong interactions between two biopolymers and RBAP, followed by a sustained release of more than 70 % peptide in the intestinal condition, thus improving its gastrointestinal stability.

View Article and Find Full Text PDF

Adsorption of Cr(VI) Using Organoclay/Alginate Hydrogel Beads and Their Application to Tannery Effluent.

Gels

November 2024

Departamento de Ingeniería Química, Universidad Nacional de Colombia Sede Manizales, Campus La Nubia, km 9 vía al Aeropuerto, Manizales 170003, Colombia.

The tanning industry is among the most environmentally harmful activities globally due to the pollution of lakes and rivers from its effluents. Hexavalent chromium, a metal in tannery effluents, has adverse effects on human health and ecosystems, requiring the development of removal techniques. This study assessed the efficacy of organobentonite/alginate hydrogel beads in removing Cr(VI) from a fixed-bed adsorption column system.

View Article and Find Full Text PDF

Hydrogels are adaptable substances with a 3D framework able to hold large quantities of water, which is why they are ideal for use in the field of biomedicine. This research project focused on creating a new hydrogel combining carboxymethyl chitosan (CMCS), graphene quantum dots (GQDs), pectin (Pe), and MIL-88 for precise and controlled release of the cancer drug doxorubicin (DOX). The creation of CMCS/GQDs@Pe/MIL-88 hydrogel beads was achieved through an eco-friendly one-step synthesis method.

View Article and Find Full Text PDF

Temporomandibular joint osteoarthritis (TMJOA) is a painful inflammatory condition that limits mouth opening. Cell-derived exosomes, which have anti-inflammatory effects, are emerging as a treatment for TMJOA. Injection of dental pulp stem cells (DPSCs), which secrete exosomes, can moderate tissue damage in a rat model of TMJOA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!