Mechanism research of Tollip negative feedback regulation in TLR4 signaling pathways based on spinal tuberculosis: Detection of Tollip and NF-κB expression levels.

Int J Biol Macromol

Department of Orthopedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi Province, China; Department of Orthopaedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi Key Laboratory of Basic and Translational Research of Bone and Joint Degenerative Diseases, Guangxi Biomedical Materials Engineering Research Center for Bone and Joint Degenerative Diseases, Baise 533000, Guangxi Province, China. Electronic address:

Published: November 2024

AI Article Synopsis

  • * U937 cells were modified using RNA interference and overexpression techniques to examine the effects of Tollip on cell behavior and TB infection in a lab setting.
  • * Results indicate that Tollip can negatively regulate factors in the TLR4 pathway, suggesting its potential as a biomarker for early TB diagnosis.

Article Abstract

The emergence of drug-resistant mycobacterium tuberculosis (MTB, or TB) strains has led to an increasing incidence of TB. Spinal tuberculosis is the most common extrapulmonary tuberculosis. In the present study, tollip, a negative feedback regulatory factor in TLR4 signaling pathway was chosen based on previous studies on osteoarticular tuberculosis. U937 cells were transfected with recombinant lentivirus containing shRNA (RNA interference, RNAi) or overexpression vector containing Tollip gene and tested in vitro. The expression levels of Tollip and TLR4 were detected by Real-time PCR and immunofluorescence techniques, and the cell morphology and infection effect were observed by DAPI staining. The results suggested that Tollip gene could negatively inhibit the expression of related factors in TLR4 signaling pathway, and thus is a potential biomarker for early diagnosis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2024.136458DOI Listing

Publication Analysis

Top Keywords

tlr4 signaling
12
tollip negative
8
negative feedback
8
spinal tuberculosis
8
expression levels
8
signaling pathway
8
tollip gene
8
tuberculosis
5
tollip
5
mechanism tollip
4

Similar Publications

With an enormous potential in immunology and vaccinology, lipopolysaccharides (LPSs) are among the most extensively studied bacteria-derived molecules. LPS centered studies are countless, and their results reverberate in all areas of the life sciences, including chemistry, biology, genetics, biophysics, and medicine. Most of these research activities are focused on the LPS-induced immune response activation by means of Myeloid Differentiation protein-2/Toll Like Receptor 4 (MD-2/TLR4) complex, which currently is the most largely explored LPS sensing pathway.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

German Center for Neurodegenerative Diseases (DZNE), Bonn, NRW, Germany; Institute of Innate Immunity, Bonn, NRW, Germany.

Background: Western-diet (WD) can induce sterile inflammation and epigenetic reprogramming of myeloid cells, affecting their immune response (Christ et al., 2018). However, the molecular signaling mediating these changes was unknown.

View Article and Find Full Text PDF

Background: Hypertension is a leading risk factor for the development of Alzheimer's disease and Alzheimer's disease-related dementia (AD/ADRD), which is closely linked with cerebral vascular inflammation and dysfunction. We previously found that high-salt-treated Dahl Salt-Sensitive (SS) rats displayed blood-brain barrier (BBB) leakage, astrocyte activation, neurodegeneration, and cognitive impairments. CD14 functions in the Toll-like receptor 4 (TLR4) complex to initiate proinflammatory signaling events in response to LPS.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.

Background: Excessive high-fat diet (HFD) consumption develops the obese pre-diabetic condition, which initiates neuroinflammation and numerous brain pathologies, resulting in cognitive decline (1). A cinnamamide derivative compound (2i-10) is recently identified as a novel myeloid differentiation factor 2 (MD-2) inhibitor, and has been shown to attenuate inflammation via toll-like receptor 4 (TLR4) signaling pathway (2). However, the effects of 2i-10 on the neuroinflammation, brain pathologies and cognitive function in the obese pre-diabetic rats have never been studied.

View Article and Find Full Text PDF

Renal protection by acacetin in streptozotocin-induced diabetic nephropathy via TLR4/NF-κB pathway modulation in rats.

Adv Clin Exp Med

January 2025

Department of Acupuncture and Rehabilitation, Chunan Campus of Hangzhou Traditional Chinese Medicine Hospital, Chunan County Hospital of Traditional Chinese Medicine, Hangzhou, China.

Background: Diabetic nephropathy (DN), the most severe microvascular consequence of diabetes mellitus (DM), is the precursor to end-stage renal disease (ESRD). The development of problems linked to DN involves both oxidative damage and inflammation. Natural flavone acacetin (AC) has anti-inflammatory, antioxidant and anti-cancer properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!