Objective: This study investigates the use of Large Language Models (LLMs) for matching patients to clinical trials (CTs) within an information retrieval pipeline. Our objective is to enhance the process of patient-trial matching by leveraging the semantic processing capabilities of LLMs, thereby improving the effectiveness of patient recruitment for clinical trials.
Methods: We employed a multi-stage retrieval pipeline integrating various methodologies, including BM25 and Transformer-based rankers, along with LLM-based methods. Our primary datasets were the TREC Clinical Trials 2021-23 track collections. We compared LLM-based approaches, focusing on methods that leverage LLMs in query formulation, filtering, relevance ranking, and re-ranking of CTs.
Results: Our results indicate that LLM-based systems, particularly those involving re-ranking with a fine-tuned LLM, outperform traditional methods in terms of nDCG and Precision measures. The study demonstrates that fine-tuning LLMs enhances their ability to find eligible trials. Moreover, our LLM-based approach is competitive with state-of-the-art systems in the TREC challenges. The study shows the effectiveness of LLMs in CT matching, highlighting their potential in handling complex semantic analysis and improving patient-trial matching. However, the use of LLMs increases the computational cost and reduces efficiency. We provide a detailed analysis of effectiveness-efficiency trade-offs.
Conclusion: This research demonstrates the promising role of LLMs in enhancing the patient-to-clinical trial matching process, offering a significant advancement in the automation of patient recruitment. Future work should explore optimising the balance between computational cost and retrieval effectiveness in practical applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jbi.2024.104734 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!