A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Spatial learning and memory impairment at the post-follicular depletion state is associated with reduced hippocampal glucose uptake. | LitMetric

AI Article Synopsis

  • The menopausal transition involves complex changes in the brain and metabolism that can lead to cognitive deficits, as observed both in humans and rodent models.
  • In this study, young female rats were given a substance (VCD) to simulate menopause, and researchers examined their behavior, brain structure, metabolism, and hormonal changes over time.
  • Results indicated that the rats experienced reduced spatial learning and memory, decreased hippocampal glucose uptake, and hormonal imbalances, which suggest that menopause-related ovarian function loss can negatively affect cognitive abilities and brain metabolism.

Article Abstract

The menopausal transition is a complex neuroendocrine aging process affecting brain structure and metabolic function. Such changes are consistent with neurological sequelae noted following the menopausal transition, including cognitive deficits. Although studies in rodent models of the menopause revealed changes in learning and memory, little is known about the structural and metabolic changes in the brain regions serving the cognitive function in these models. The administration 4-vinylcyclohexene diepoxide (VCD) in laboratory animals results in follicular depletion, and thus, is a powerful translational tool that models the human menopause. In the studies presented here, we evaluated behavior, brain structure, and metabolism in young female rats administered with either VCD or vehicle for 15 days across the early, mid, and post-follicular depletion states at 1-, 2-, and 3-months post-final injection, respectively. Additionally, we evaluated the serum hormonal profile and ovarian follicles based on the estrous cycle pattern. Positron emission tomography (PET) was utilized to determine regional brain glucose metabolism in the hippocampus, medial prefrontal cortex, and striatum. Subsequently, the rats were euthanized for ex-vivo magnetic resonance imaging (MRI) to assess regional brain volumes. VCD-induced rats at the post-follicular depleted time points had diminished spatial learning and memory as well as reduced hippocampal glucose uptake. Additionally, VCD-induced rats at post-follicular depletion time points had marked reductions in estradiol, progesterone, and anti-mullerian hormone with an increase in follicle-stimulating hormone. These rats also exhibited fewer ovarian follicles, indicating that substantial ovarian function loss during post-follicular time points impairs the female rats' spatial learning/memory abilities and triggers the metabolic changes in the hippocampus.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.exger.2024.112607DOI Listing

Publication Analysis

Top Keywords

learning memory
12
post-follicular depletion
12
time points
12
spatial learning
8
reduced hippocampal
8
hippocampal glucose
8
glucose uptake
8
menopausal transition
8
brain structure
8
metabolic changes
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!