Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The contamination of farmland soils with cadmium (Cd) poses a substantial threat to agricultural productivity, food security and safety, and ultimately human health. However, little research has been done on the Cd transport mechanisms in highly Cd polluted soil via field experiment. This study, from a field-scale perspective, examines the migration and transformation features of Cd throughout the growth cycle of five (C1, C2, C3, C4, H1) Japonica rice cultivars in Jiangsu Province, China. Analysis of pH, SOM, total Cd, DTPA-Cd, and microbial communities were conducted. C1 ~ C3 were classified as High Cd-accumulating rice (HC), while C4 and H1 were considered as low Cd-accumulating rice (LC) based on the Cd levels in their brown rice. Phloem was confirmed as the main pathway for Cd into rice grains in high-Cd soil. For the HC group, the Cd concentration in brown and polished rice was positively correlated with the Cd concentration in the leaves and spikes; while for the LC group, they were significantly positively correlated with the Cd concentration in both stem and spike (p < 0.05). The husks of the LC group were more effective in intercepting and sequestering Cd. It was revealed that 6 % ~ 9.09 % of the Cd content detected in the rice grains could be attributed to the internal translocation processes occurring within the plant itself, and approximately 90.91 % ~ 93.84 % of the Cd was traced back to the roots' absorption during grouting. Rice polishing decreased the Cd content from the level in the brown rice by 18 % ~ 47 %. Distinct microbial profiles separated rice rhizosphere from bulk soil, with the former favouring copiotrophs in nutrient-rich zones and the latter oligotrophs in lean conditions. This study delivers crucial data support from a field perspective for a deeper understanding and control of Cd migration and transformation processes in highly Cd-contaminated soil.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2024.176744 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!