A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

In-field carbon dioxide removal via weathering of crushed basalt applied to acidic tropical agricultural soil. | LitMetric

In-field carbon dioxide removal via weathering of crushed basalt applied to acidic tropical agricultural soil.

Sci Total Environ

College of Science and Engineering, James Cook University, Cairns, Australia; Leverhulme Centre for Climate Change Mitigation, University of Sheffield, Sheffield, United Kingdom.

Published: December 2024

AI Article Synopsis

  • Enhanced weathering (EW) of basalt, a silicate rock, is being studied as a method for carbon dioxide removal (CDR) to help mitigate climate change, particularly in tropical northeastern Australia.* -
  • Field experiments from 2018 to 2022 measuring the effects of basalt on sugarcane crops showed increased soil pH and nutrient levels, but no significant improvement in crop yields or detectable increase in soil inorganic carbon levels.* -
  • The study found that although the basalt weathering process did not significantly enhance CDR, it may still contribute to long-term reductions in CO emissions from the soil due to changes in soil acidity levels and delayed effects from continued basalt application.*

Article Abstract

Enhanced weathering (EW) of silicate rocks such as basalt provides a potential carbon dioxide removal (CDR) technology for combatting climate change. Modelling and mesocosm studies suggest significant CDR via EW but there are few field studies. This study aimed to directly measure in-field CDR via EW of basalt applied to sugarcane on acidic (pH 5.8, 0-0.25 m) Ultisol in tropical northeastern Australia, where weathering potential is high. Coarsely crushed basalt produced as a byproduct of gravel manufacture (<5 mm) was applied annually from 2018 to 2022 at 0 or 50 t ha a, incorporated into the soil in 2018 but not in subsequent years. Measurements in 2022 show increased soil pH and extractable Mg and Si at 0-0.25 m depth, indicating significant weathering of the basalt, but showed no increase in crop yield. Soil inorganic carbon content and bicarbonate (HCO) flux to deep drainage (1.25 m depth) were measured to quantify CDR in the 2022-2023 wet season (i.e. one year). Soil inorganic carbon was below detection limits. Mean HCO flux was 3.15 kmol ha a (±0.40) in the basalt-treated plots and 2.56 kmol ha a (±0.18) in the untreated plots but the difference (0.59 kmol ha a or 0.026 t CO ha a) was not significant (p = 0.082). Most weathering of the basalt was attributed to acids stronger than carbonic acid. These were, in decreasing order of contribution, surface-bound protons (inherent soil acidity), nitric acid (from nitrification), organic acids, and acids associated with cation uptake by plants. These results indicate in-field CDR via EW of basalt is low where soil and regolith pH is well below the pK of 6.4 for HCO. However, increased soil pH, and the consumption of strong acids by weathering will eventually lead to reduced CO emission from soil or evasion from rivers, with continued basalt addition.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2024.176568DOI Listing

Publication Analysis

Top Keywords

carbon dioxide
8
dioxide removal
8
crushed basalt
8
basalt applied
8
in-field carbon
4
removal weathering
4
weathering crushed
4
basalt
4
applied acidic
4
acidic tropical
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!