This paper addresses the critical issue of detecting and localizing damage in plate-like structures, which are commonly encountered in aerospace, marine and other engineering applications. To address this challenge, the current study introduces the sideband peak count (SPC) technique as the foundation for diagnostic imaging for damage detection in plate structures. The proposed damage detection algorithm requires only a limited number of sensor responses, streamlining the detection process. It does not rely on a reference baseline, thereby enhancing its efficiency and accuracy. This approach enables rapid and precise identification of damage and its location within the plate structure. To validate the effectiveness and applicability of the proposed method, finite element simulation results are utilized. These results demonstrate the capability of the proposed technique to accurately detect and localize damage, providing a promising solution for enhancing the structural health monitoring of plate-like structures in various engineering domains.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ultras.2024.107485 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!