Cyanobacteria are the most frequent dominant species of algal blooms in inland waters, threatening ecosystem function and water quality, especially when toxin-producing strains predominate. Enhanced by anthropogenic activities and global warming, cyanobacterial blooms are expected to increase in frequency and global distribution. Early Warning Systems (EWS) for cyanobacterial blooms development allow timely implementation of management measures, reducing the risks associated to these blooms. In this paper, we propose an effective EWS for cyanobacterial bloom forecasting, which uses 6 years of incomplete high-frequency spatio-temporal data from multiparametric probes, including phycocyanin (PC) fluorescence as a proxy for cyanobacteria. A probe agnostic and replicable method is proposed to pre-process the data and to generate time series specific for cyanobacterial bloom forecasting. Using these pre-processed data, six different non-site/species-specific predictive models were compared including the autoregressive and multivariate versions of Linear Regression, Random Forest, and Long-Term Short-Term (LSTM) neural networks. Results were analyzed for seven forecasting time horizons ranging from 4 to 28 days evaluated with a hybrid system that combined regression metrics (MSE, R, MAPE) for PC values, classification metrics (Accuracy, F1, Kappa) for a proposed alarm level of 10 µg PC/L, and a forecasting-specific metric to measure prediction improvement over the displaced signal (skill). The multivariate version of LSTM showed the best and most consistent results across all forecasting horizons and metrics, achieving accuracies of up to 90 % in predicting the proposed PC alarm level. Additionally, positive skill values indicated its outstanding effectiveness to forecast cyanobacterial blooms from 16 to 28 days in advance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2024.122553 | DOI Listing |
Chemosphere
December 2024
Key Laboratory of Health Intelligent Perception and Ecological Restoration of River and Lake, Ministry of Education, Hubei University of Technology, Wuhan 430068, China; Innovation Demonstration Base of Ecological Environment Geotechnical and Ecological Restoration of Rivers and Lakes, School of Civil and Environmental Engineering, Hubei University of Technology, Wuhan 430068, China. Electronic address:
Cyanobacterial blooms are prevalent globally and present a significant threat to water security. Titanium salt coagulants have garnered considerable attention due to their superior coagulation properties and the absence of metal residue risks. This paper explored the influencing factors in the coagulation process of titanium xerogel coagulant (TXC), the alterations in cell activity during floc storage, and the release of cyanobacterial organic matters, thereby determining the application scope of TXC for cyanobacterial water treatment.
View Article and Find Full Text PDFToxins (Basel)
December 2024
Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Tripoli P.O. Box 100, Lebanon.
Cyanobacteria, also known as blue-green algae, are a diverse phylum of photosynthetic, Gram-negative bacteria and one of the largest microbial taxa. These organisms produce cyanotoxins, which are secondary metabolites that can have significant impacts on both human health and the environment. While toxins like Microcystins and Cylindrospermopsins are well-documented and have been extensively studied, other cyanotoxins, including those produced by and , remain underexplored.
View Article and Find Full Text PDFToxins (Basel)
December 2024
College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde 415000, China.
Microcystin-leucine arginine (MC-LR) poses a serious threat to aquatic animals during cyanobacterial blooms. Recently, biochar (BC), derived from rice straw, has emerged as a potent adsorbent for eliminating hazardous contaminants from water. To assess the joint hepatotoxic effects of environmentally relevant concentrations of MC-LR and BC on fish, male adult zebrafish () were sub-chronically co-exposed to varying concentrations of MC-LR (0, 1, 5, and 25 μg/L) and BC (0 and 100 μg/L) in a fully factorial experiment.
View Article and Find Full Text PDFToxins (Basel)
December 2024
Environmental Technology and Water Resources Postgraduate Program, Department of Civil and Environmental Engineering, University of Brasília, Brasília 70910-900, Brazil.
The frequency and intensity of harmful cyanobacterial blooms have increased in the last decades, posing a risk to public health since conventional water treatments do not effectively remove extracellular cyanotoxins. Consequently, advanced technologies such as the Fenton process are required to ensure water safety. The cyanotoxin cylindrospermopsin (CYN) demands special attention, as it is abundant in the extracellular fraction and has a high toxicological potential.
View Article and Find Full Text PDFToxins (Basel)
December 2024
Cawthron Institute, Molecular Algal Ecology, Nelson 7010, New Zealand.
This study reports the first documented accumulation of lyngbyatoxin-a (LTA), a cyanotoxin produced by marine benthic cyanobacteria, in edible shellfish in Aotearoa New Zealand. The study investigates two bloom events in 2022 and 2023 on Waiheke Island, where hundreds of tonnes of marine benthic cyanobacterial mats (mBCMs) washed ashore each summer. Genetic analysis identified the cyanobacterium responsible for the blooms as sp.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!