Ferroptosis is a unique modality of regulated cell death that is driven by iron-dependent phospholipid peroxidation. N6-methyladenosine (mA) RNA modification participates in varieties of cellular processes. However, it remains elusive whether mA reader Fragile X Mental Retardation Protein (FMRP) are involved in the modulation of ferroptosis in breast cancer (BC). In this study, we found that FMRP expression was elevated and associated with poor prognosis and pathological stage in BC patients. Overexpression of FMRP induced ferroptosis resistance and exerted oncogenic roles by positively regulating a critical ferroptosis defense gene SLC7A11. Mechanistically, upregulated FMRP catalyzes mA modification of SLC7A11 mRNA and further influences the SLC7A11 translation through METTL3-dependent manner. Further studies revealed that FMRP interacts with splicing factor hnRNPM to recognize the splice site and then modulated the exon skip splicing event of SLC7A11 transcript. Interestingly, SLC7A11-S splicing variant can effectively promote FMRP overexpression-induced ferroptosis resistance in BC cells. Moreover, our clinical data suggested that FMRP/hnRNPM/SLC7A11 expression were significantly increased in the tumor tissues, and this signal axis was important evaluation factors closely related to the worse survival and prognosis of BC patients. Overall, our results uncovered a novel regulatory mechanism by which high FMRP expression protects BC cells from undergoing ferroptosis. Targeting the FMRP-SLC7A11 axis has a dual effect of inhibiting ferroptosis resistance and tumor growth, which could be a promising therapeutic target for treating BC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11497378 | PMC |
http://dx.doi.org/10.1016/j.redox.2024.103382 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!